问题
I am trying to run a boxcox transformation with the following code:
urban1 <- subset(ski,urban <= 4,na.rm=TRUE)
ski$gender <- as.numeric((as.character(ski$gender)),na.rm=TRUE)
urban1 <- as.numeric((as.character(urban1)))
x <- (ski$gender*urban1)
y <- ski$EPSI.
bc <- boxcox(y ~ x)
(trans <- bc$x[which.max(bc$y)])
model3 <- lm(y ~ x)
model3new <- lm(y^trans ~ x)
ski$EPSI. <- ski$EPSI. + 1
But I keep getting this error:
Error in lm.fit(x,y,offset = offset, singular.ok = singular.ok, ...) : 0 (non-NA) cases Calls: ... eval -> eval -> boxcar -> boxcar.formula -> lm -> lm.fit Execution halted
Thanks in advance!
回答1:
The error message
lm.fit(x,y,offset = offset, singular.ok = singular.ok, ...) : 0 (non-NA) cases
is generated by the lm(y ~ x)
command when variables x
or y
(or both) have only NAs.
Here is an example:
n <- 10
x <- rnorm(n,1)
y <- rep(NA,n)
lm(y ~ x)
Error in lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
0 (non-NA) cases
In your code I suggest to test (just before your lm
commands) if one of your variables has all NAs using:
all(is.na(x))
all(is.na(y))
all(is.na(y^trans))
In my example:
all(is.na(y))
[1] TRUE
回答2:
The error can be triggered by NA's in your data or a bad transformation
#From the mtcars dataset
mpg.reg3 <- lm(mpg ~ cylinders + displacement + horsepower + weight + acceleration + year + origin, data=Auto, na.action=na.exclude)
Notice the na.action=
argument. Setting this to na.exclude
will allow the lm
function to ignore NA's in your data. Another option is na.omit
which acts in a slightly different manner.
The other problem may be a bad transformation of your data- double check your interaction terms and manipulations.
来源:https://stackoverflow.com/questions/43677853/error-in-lm-fitx-y-offset-offset-singular-ok-0-non-na-cases-with-boxcox