双线性插值(Bilinear Interpolation)

浪尽此生 提交于 2020-03-15 11:10:14

最近用到插值算法,使用三次样条插值仿真速度太慢,于是采用算法简单的线性插值。本篇主要介绍一下双线性插值的实现方法。

1. 线性插值

已知坐标 (x0y0) 与 (x1y1),要得到 [x0x1] 区间内某一位置 x 在直线上的值。

由于 x 值已知,所以可以从公式得到 y 的值

已知 y 求 x 的过程与以上过程相同,只是 x 与 y 要进行交换。

 

2. 双线性插值(Bilinear Interpolation)

在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

图中:红色的数据点与待插值得到的绿色点

假如我们想得到未知函数 f 在点 P = (xy) 的值,假设我们已知函数 f 在 Q11 = (x1y1)、Q12 = (x1y2), Q21 = (x2y1) 以及 Q22 = (x2y2) 四个点的值。

首先在 x 方向进行线性插值,得到

然后在 y 方向进行线性插值,得到

这样就得到所要的结果 f(xy),

双线性插值在三维空间的延伸是三线性插值。

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!