20200311——java面试集合 深入HashMap 二

扶醉桌前 提交于 2020-03-12 03:53:43

ArrayList、Vector、LinkedList的存储性能和特性

ArrayList 和Vector都是使用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入数据慢,Vector中的方法由于添加了synchronized修饰,因此Vector是线程安全的容器,但性能上较ArrayList差,因此已经是Java中的遗留容器。

LinkedList使用双向链表实现存储(将内存中零散的内存单元通过附加的引用关联起来,形成一个可以按序号索引的线性结构,这种链式存储方式与数组的连续存储方式相比,内存的利用率更高),按序号索引数据需要进行前向或后向遍历,但是插入数据时只需要记录本项的前后项即可,所以插入速度较快。

TreeMap的底层实现
TreeMap 的实现就是红黑树数据结构,也就说是一棵自平衡的排序二叉树,这样就可以保证当需要快速检索指定节点。

红黑树的插入、删除、遍历时间复杂度都为O(lgN),所以性能上低于哈希表。但是哈希表无法提供键值对的有序输出,红黑树因为是排序插入的,可以按照键的值的大小有序输出。红黑树性质:

性质1:每个节点要么是红色,要么是黑色。

性质2:根节点永远是黑色的。

性质3:所有的叶节点都是空节点(即 null),并且是黑色的。

性质4:每个红色节点的两个子节点都是黑色。(从每个叶子到根的路径上不会有两个连续的红色节点)

性质5:从任一节点到其子树中每个叶子节点的路径都包含相同数量的黑色节点。

哈希冲突
然而万事无完美,如果两个不同的元素,通过哈希函数得出的实际存储地址相同怎么办?也就是说,当我们对某个元素进行哈希运算,得到一个存储地址,然后要进行插入的时候,发现已经被其他元素占用了,其实这就是所谓的哈希冲突,也叫哈希碰撞。前面我们提到过,哈希函数的设计至关重要,好的哈希函数会尽可能地保证 计算简单和散列地址分布均匀,但是,我们需要清楚的是,数组是一块连续的固定长度的内存空间,再好的哈希函数也不能保证得到的存储地址绝对不发生冲突。那么哈希冲突如何解决呢?哈希冲突的解决方案有多种:开放定址法(发生冲突,继续寻找下一块未被占用的存储地址),再散列函数法,链地址法,而HashMap即是采用了链地址法,也就是数组+链表的方式。

hashmap的实现原理
HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合)

transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

Entry是HashMap中的一个静态内部类。代码如下

    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        Entry<K,V> next;//存储指向下一个Entry的引用,单链表结构
        int hash;//对key的hashcode值进行hash运算后得到的值,存储在Entry,避免重复计算

        /**
         * Creates new entry.
         */
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        } 

简单来说,HashMap由数组+链表组成的,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的,如果定位到的数组位置不含链表(当前entry的next指向null),那么查找,添加等操作很快,仅需一次寻址即可;如果定位到的数组包含链表,对于添加操作,其时间复杂度为O(n),首先遍历链表,存在即覆盖,否则新增;对于查找操作来讲,仍需遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好。

/**实际存储的key-value键值对的个数*/
transient int size;

/**阈值,当table == {}时,该值为初始容量(初始容量默认为16);当table被填充了,也就是为table分配内存空间后,
threshold一般为 capacity*loadFactory。HashMap在进行扩容时需要参考threshold,后面会详细谈到*/
int threshold;

/**负载因子,代表了table的填充度有多少,默认是0.75
加载因子存在的原因,还是因为减缓哈希冲突,如果初始桶为16,等到满16个元素才扩容,某些桶里可能就有不止一个元素了。
所以加载因子默认为0.75,也就是说大小为16的HashMap,到了第13个元素,就会扩容成32。
*/
final float loadFactor;

/**HashMap被改变的次数,由于HashMap非线程安全,在对HashMap进行迭代时,
如果期间其他线程的参与导致HashMap的结构发生变化了(比如put,remove等操作),
需要抛出异常ConcurrentModificationException*/
transient int modCount;

hashmap构造函数
HashMap有4个构造器,其他构造器如果用户没有传入initialCapacity 和loadFactor这两个参数,会使用默认值

public HashMap(int initialCapacity, float loadFactor) {
     //此处对传入的初始容量进行校验,最大不能超过MAXIMUM_CAPACITY = 1<<30(230)
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
     
        init();//init方法在HashMap中没有实际实现,不过在其子类如 linkedHashMap中就会有对应实现
    }

put操作的实现

public V put(K key, V value) {
        //如果table数组为空数组{},进行数组填充(为table分配实际内存空间),入参为threshold,
        //此时threshold为initialCapacity 默认是1<<4(24=16)
        if (table == EMPTY_TABLE) {
            inflateTable(threshold);
        }
       //如果key为null,存储位置为table[0]或table[0]的冲突链上
        if (key == null)
            return putForNullKey(value);
        int hash = hash(key);//对key的hashcode进一步计算,确保散列均匀
        int i = indexFor(hash, table.length);//获取在table中的实际位置
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        //如果该对应数据已存在,执行覆盖操作。用新value替换旧value,并返回旧value
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        modCount++;//保证并发访问时,若HashMap内部结构发生变化,快速响应失败
        addEntry(hash, key, value, i);//新增一个entry
        return null;
    }

inflateTable这个方法用于为主干数组table在内存中分配存储空间,通过roundUpToPowerOf2(toSize)可以确保capacity为大于或等于toSize的最接近toSize的二次幂,比如toSize=13,则capacity=16;to_size=16,capacity=16;to_size=17,capacity=32.

private void inflateTable(int toSize) {
        int capacity = roundUpToPowerOf2(toSize);//capacity一定是2的次幂
        /**此处为threshold赋值,取capacity*loadFactor和MAXIMUM_CAPACITY+1的最小值,
        capaticy一定不会超过MAXIMUM_CAPACITY,除非loadFactor大于1 */
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];
        initHashSeedAsNeeded(capacity);
    }

roundUpToPowerOf2中的这段处理使得数组长度一定为2的次幂,Integer.highestOneBit是用来获取最左边的bit(其他bit位为0)所代表的数值.

 private static int roundUpToPowerOf2(int number) {
        // assert number >= 0 : "number must be non-negative";
        return number >= MAXIMUM_CAPACITY
                ? MAXIMUM_CAPACITY
                : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
    }

hash函数
/*这是一个神奇的函数,用了很多的异或,移位等运算
对key的hashcode进一步进行计算以及二进制位的调整等来保证最终获取的存储位置尽量分布均匀
/

final int hash(Object k) {
        int h = hashSeed;
        if (0 != h && k instanceof String) {
            return sun.misc.Hashing.stringHash32((String) k);
        }

        h ^= k.hashCode();

        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

h&(length-1)保证获取的index一定在数组范围内,举个例子,默认容量16,length-1=15,h=18,转换成二进制计算为index=2。位运算对计算机来说,性能更高一些(HashMap中有大量位运算)

所以最终存储位置的确定流程是这样的:在这里插入图片描述

addEntry的实现:

void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {
            resize(2 * table.length);//当size超过临界阈值threshold,并且即将发生哈希冲突时进行扩容
            hash = (null != key) ? hash(key) : 0;
            bucketIndex = indexFor(hash, table.length);
        }

        createEntry(hash, key, value, bucketIndex);
    }

通过以上代码能够得知,当发生哈希冲突并且size大于阈值的时候,需要进行数组扩容,扩容时,需要新建一个长度为之前数组2倍的新的数组,然后将当前的Entry数组中的元素全部传输过去,扩容后的新数组长度为之前的2倍,所以扩容相对来说是个耗资源的操作。

为何HashMap的数组长度一定是2的次幂?

这个方法将老数组中的数据逐个链表地遍历,扔到新的扩容后的数组中,我们的数组索引位置的计算是通过 对key值的hashcode进行hash扰乱运算后,再通过和 length-1进行位运算得到最终数组索引位置。

HashMap的数组长度一定保持2的次幂,比如16的二进制表示为 10000,那么length-1就是15,二进制为01111,同理扩容后的数组长度为32,二进制表示为100000,length-1为31,二进制表示为011111。从下图可以我们也能看到这样会保证低位全为1,而扩容后只有一位差异,也就是多出了最左位的1,这样在通过 h&(length-1)的时候,只要h对应的最左边的那一个差异位为0,就能保证得到的新的数组索引和老数组索引一致(大大减少了之前已经散列良好的老数组的数据位置重新调换),个人理解。

在这里插入图片描述

还有,数组长度保持2的次幂,length-1的低位都为1,会使得获得的数组索引index更加均匀

如果我们已经对HashMap的原理有了一定了解,这个结果就不难理解了。尽管我们在进行get和put操作的时候,使用的key从逻辑上讲是等值的(通过equals比较是相等的),但由于没有重写hashCode方法,所以put操作时,key(hashcode1)–>hash–>indexFor–>最终索引位置 ,而通过key取出value的时候 key(hashcode1)–>hash–>indexFor–>最终索引位置,由于hashcode1不等于hashcode2,导致没有定位到一个数组位置而返回逻辑上错误的值null(也有可能碰巧定位到一个数组位置,但是也会判断其entry的hash值是否相等,上面get方法中有提到。)

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!