极大似然估计详解

前提是你 提交于 2020-03-11 10:49:00

转自:https://blog.csdn.net/qq_39355550/article/details/81809467

原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大。

总结:极大似然估计利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。即MLE的目标是找出一组参数(模型中的参数),使得模型产出观察数据的概率最大。

记已知的样本集为:

  似然函数(linkehood function):联合概率密度函数称为相对于的θ的似然函数。

 如果是参数空间中能使似然函数最大的θ值,则应该是“最可能”的参数值,那么就是θ的极大似然估计量。它是样本集的函数:

极大似然估计量求解:

实际中为了便于分析,定义了对数似然函数:

1. 未知参数只有一个(θ为标量)

在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:

2.未知参数有多个(θ为向量)

则θ可表示为具有S个分量的未知向量:

记梯度算子:

 若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。

方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。

极大似然估计的例子

  例1:设样本服从正态分布,则似然函数为:

它的对数:

求导,得方程组:

联合解得:

似然方程有唯一解:,而且它一定是最大值点,这是因为当时,非负函数。于是U和的极大似然估计为

例2:设样本服从均匀分布[a, b]。则X的概率密度函数:

对样本

很显然,L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求L(a,b)的最大值,为使L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于,否则,L(a,b)=0。类似地a不能大过,因此,a和b的极大似然估计:

例3.抛硬币(n重伯努利实验)

总结

求最大似然估计量的一般步骤:

        (1)写出似然函数;

        (2)对似然函数取对数,并整理;

        (3)求导数;

        (4)解似然方程。

最大似然估计的特点:

        1.比其他估计方法更加简单;

        2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;

        3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!