面板数据回归:R语言code

心已入冬 提交于 2020-03-11 05:42:20

library(plm)

library(psych)

library(xts)

library(tseries)

library(lmtest)

 

## import dataset

datas<-read.table("data.txt",header =TRUE)

 

## adf test

pcgdp<-xts(datas$PCGDP,as.Date(datas$year))

adf.test(pcgdp)

# result: stationary

 

ltax<-xts(datas$Ltax,as.Date(datas$year))

adf.test(ltax)

# result: stationary

 

hp<-xts(datas$hp,as.Date(datas$year))

adf.test(hp)

# result: stationary

 

lp<-xts(datas$lp,as.Date(datas$year))

adf.test(lp)

# result: stationary

 

## 协整检验

# Engle-Granger

reg<-lm(datas$hp~datas$lp+datas$Ltax+datas$PCGDP)

summary(reg)

error<-residuals(reg)

adf.test(error)

# result: residuals stationary

 

### 面板数据回归

hpdatas<-plm.data(datas,index=c("city","year"))

 

# Pooled Regression Model

hp_pool<-plm(hp~lp+Ltax+PCGDP+PP,data=hpdatas,model = "pooling")

 

# Fixed Effects Regression Model

hp_fe<-plm(hp~lp+Ltax+PCGDP+PP,data=hpdatas,model = "within")

 

# F-test :

pFtest(hp_fe,hp_pool)

# result: significant effects

 

# Random Effects Regression Model

hp_re<-plm(hp~lp+Ltax+PCGDP,data=hpdatas,model="random",random.method = "swar")

           

# Hausman test

phtest(hp_fe,hp_re)

# if p<0.05,then use fixed effects

# result: p=0.6785>0.05,use random ffects

 

# Random Effects Regression Model

hp_re<-plm(hp~lp+Ltax+PCGDP,data=hpdatas,model="random",random.method = "swar")

summary(hp_re)

# 显著水平 a=0.01

# result: fp:房价与 lp:地价正相关,且显著; 

#         fp:房价与 Ltax: 地税收入正相关,且显著; 

#         fp:房价与 PCGDP: 人均GDP 正相关,且显著;

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!