一、前言
淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用MySQL作为消息存储媒介,支持水平扩容。为了进一步降低成本,阿里中间件团队认为Notify可进一步优化。
2011年初,Linkedin开源了kafka, 阿里中间件团队在对kafka做了充分的review之后,被kafka的无限消息堆积能力、高效的持久化速度深深吸引,但同时发现kafka主要定位于日志传输,对于使用在淘宝交易、订单、充值等场景下,还有若干特性不满足。因此,阿里中间件团队基于Java重新编写了RocketMQ,定位于不仅限于日志场景的可靠消息传输。
目前,RocketMQ在阿里集团被广泛应用于订单、充值、交易、流计算、消息推送、日志流式处理、binlog分发等场景。
二、RocketMQ与kafka的不同
1、数据可靠性
RocketMQ:支持异步实时刷盘、同步刷盘、同步复制、异步复制。
kafka:使用异步刷盘方式,异步复制/同步复制。
总结:
1、RocketMQ支持kafka所不具备的“同步刷盘”功能,在单机可靠性上比kafka更高,不会因为操作系统Crash而导致数据丢失。
2、kafka的同步replication理论上性能低于RocketMQ的replication,这是因为kafka的数据以partition为单位,这样一个kafka实例上可能多上百个partition。而一个RocketMQ实例上只有一个partition,RocketMQ可以充分利用IO组的commit机制,批量传输数据。同步replication与异步replication相比,同步replication性能上损耗约20%-30%。
一句话概括:RocketMQ新增了同步刷盘机制,保证了可靠性;一个RocketMQ实例只有一个partition, 在replication时性能更好。
2、性能对比
1、kafka单机写入TPS月在百万条/秒,消息大小为10个字节。
2、RocketMQ单机写入TPS单实例约7万条/秒,若单机部署3个broker,可以跑到最高12万条/秒,消息大小为10个字节。
总结:
kafka的单机TPS能跑到每秒上百万,是因为Producer端将多个小消息合并,批量发向broker。
那么RocketMQ为什么没有这样做呢?
- 发送消息的Producer通常是用Java语言,缓存过多消息,GC是个很严重的问题。(问题:难道kafka用scala不需要GC?)
- Producer发送消息到broker, 若消息发送出去后,未达到broker,就通知业务消息发送成功,若此时Broker宕机,则会导致消息丢失,从而导致业务出错。
- Producer通常为分布式系统,且每台机器都是多线程发送,通常来说线上单Producer产生的消息数量不会过万。
- 消息合并功能完全可由上层业务来做。
一句话概括:RocketMQ写入性能上不如kafka, 主要因为kafka主要应用于日志场景,而RocketMQ应用于业务场景,为了保证消息必达牺牲了性能,且基于线上真实场景没有在RocketMQ层做消息合并,推荐在业务层自己做。
3、单机支持的队列数
1、kafka单机若超过了64个partition,CPU load会发生明显飙高,partition越多,CPU load越高,发消息的响应时间变长。
2、RocketMQ单机
来源:CSDN
作者:shijinghan1126
链接:https://blog.csdn.net/shijinghan1126/article/details/104724407