综述
1.1 Cover和Hart在1968年提出了最初的邻近算法
1.2 分类(classification)算法
1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)即临时抱佛脚,不提前训练好模型
1.4 为了判断未知实例的类别,以所有已知类别的实例作为参照
算法
步骤:
选择参数K
计算未知实例与所有已知实例的距离
选择最近K个已知实例
根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别
距离(Euclidean Distance)
n维上的距离:
例子
import math
def ComputeEuclideanDistance(x1, y1, x2, y2):
d = math.sqrt(math.pow((x1-x2), 2) + math.pow((y1-y2), 2))
return d
d_ag = ComputeEuclideanDistance(3, 104, 18, 90)
print('d_ag:', d_ag)
计算G点到每个点距离
优缺点
优点:
- 简单,易于理解,容易实现
- 通过对K的选择可具备丢噪音数据的健壮性
缺点:
- 需要大量空间储存所有已知实例
- 算法复杂度高(需要比较所有已知实例与要分类的实例)
- 当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本
- 如上图中的Y点,应该归于红色类,但由于少数服从多数归于了蓝色类
改进
考虑距离,根据距离加上权重,比如: 1/d (d: 距离)
实例
sklearn
from sklearn import neighbors
from sklearn import datasets
knn = neighbors.KNeighborsClassifier()
iris = datasets.load_iris()
knn.fit(iris.data, iris.target)
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
print(predictedLabel)
自定义
import csv
import random
import math
import operator
def loadDataset(filename, split, trainingSet = [], testSet = []):
with open(filename, 'rt') as csvfile:
lines = csv.reader(csvfile)
dataset = list(lines)
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y]) # 将字符型数据转为浮点型
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x])
def euclideanDistance(instance1, instance2, length):
distance = 0
for x in range(length): # 计算每个维度的和
distance += pow((instance1[x]-instance2[x]), 2)
return math.sqrt(distance) # 测试数据到每一个训练数据的距离
def getNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)):
#testinstance
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
#distances.append(dist)
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k): # k个最近的距离
neighbors.append(distances[x][0])
return neighbors
def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)): # 看邻居的标签,进行投票
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
return sortedVotes[0][0] # 票数最多的标签
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet)))*100.0
def main():
#prepare data
trainingSet = []
testSet = []
split = 0.67
loadDataset(r'irisdata.txt', split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))
#generate predictions
predictions = []
k = 3
for x in range(len(testSet)):
# trainingsettrainingSet[x]
neighbors = getNeighbors(trainingSet, testSet[x], k)
result = getResponse(neighbors)
predictions.append(result)
print ('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
print ('predictions: ' + repr(predictions))
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: ' + repr(accuracy) + '%')
if __name__ == '__main__':
main()
来源:CSDN
作者:Glen_Zou
链接:https://blog.csdn.net/qq_36551226/article/details/104668676