推荐系统 一

天大地大妈咪最大 提交于 2020-03-06 00:26:25

最近接到一个大四学长的毕业设计,他准备做一个推荐商品的模型。使用的数据集时Amazon商品评论数据集。

接到需求时,客户是要求基于评论做推荐,因为之前有做过NLP相关的项目,也看过一些推荐系统的介绍,就爽快的答应了。

首先经过调研,推荐系统分为两种:基于项目(商品)和基于用户 =====引申出还有基于两者混合的

按照我的理解:

基于用户的推荐系统就是,查找相似的用户,看相似的用户买了些什么,然后推荐给对象。

基于项目的推荐系统就是,查找相似的商品,找到相似(排序)的商品,然后推荐给对象。

对于这个数据集我看到github上有很多人把两者都分别实现了一次。深入了解后,我觉得两者各有利弊。所以我在想,如果不是特别复杂,就做一个混合的。

初步构思

1.首先将各个商品的相似的计算出来,得到每个商品与商品之间相似度,然后排序,得出每个商品与其最相似的N个商品

2.计算对应用户评论与该商品下其他用户评论的相似度,然后得出最相近的n个人的nn个商品。

3.模型接受(商品id,用户评论),然后将1、2步得出的商品加权排序,得出推荐列表

ps1.商品相似度由评论来计算(这里是根据主题词来计算还是余弦相似度计算,待考虑)

ps2.客户要求使用Pytorch来做,所以我准备使用Bert做词嵌入(相似度的计算就使用余弦相似度吧)

施工ing

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!