1.直方图处理概念
灰度级范围为[0,L-1]的数字图像的直方图是离散函数h(rk)=nk,其中rk是第k级灰度值,nk是图像中灰度为rk的像素个数。在实践中,经常用乘积MN表示的图像像素的总数除它的每个分量来归一化直方图,通常M和N是图像的行和列的维数。因此,归一化后的直方图由p(rk)=nk/MN给出,其中k=0,1,…,L-1。简单来说,p(rk)是灰度级rk在图像中出现的概率的一个估计。归一化直方图的所有分量之和应等于1。
在直方图中,暗图像集中分布在灰度级的低端;亮图像集中分布在灰度级的高端。低对比度图像具有较窄的直方图,且集中于灰度级的中部;高对比度图像的直方图分量则覆盖了很宽的灰度级范围。
2.直方图性质
(1)直方图反映了图像中的灰度分布规律。它描述每个灰度级具有的像元个数,但不包含这些像元在图像中的位置信息。
(2)任何一幅特定的图像都有唯一的直方图与之对应,但不同的图像可以有相同的直方图。
(3)如果一幅图像有两个不相连的区域组成,并且每个区域的直方图已知,则整幅图像的直方图是该两个区域的直方图之和。
3.直方图的应用
(1)对于每幅图像都可做出其灰度直方图。
(2)根据直方图的形态可以大致推断图像质量的好坏。由于图像包含有大量的像元,其像元灰度值的分布应符合概率统计分布规律。假定像元的灰度值是随机分布的,那么其直方图应该是正态分布。
(3)图像的灰度值是离散变量,因此直方图表示的是离散的概率分布。若以各灰度级的像元数占总像元数的比例值为纵坐标轴做出图像的直方图,将直方图中各条形的最高点连成一条外轮廓线,纵坐标的比例值即为某灰度级出现的概率密度,轮廓线可近似看成图像相应的连续函数的概率分布曲线。
4.直方图均衡化
均衡化的基本原理:是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
均衡化步骤:
(1)统计图像中每个灰度级出现的次数,计算图像中每个灰度级出现的概率;
(2)根据变换公式得到直方图均衡化的变换函数;
(3)根据变换函数映射到每个像素点;
(4)输出映射后的图像;
5.直方图均衡化作用
因为直方图均衡化处理之后,原来比较少像素的灰度会被分配到别的灰度去,像素相对集中, 处理后灰度范围变大,对比度变大,清晰度变大,所以能有效增强图像。
直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。
H= imread('1.png');
if length(size(H))>2 //获取矩阵的行数和列数
H=rgb2gray(H);
end
subplot(3,2,1);
imshow(H); title('原图');
subplot(3,2,2);
imhist(H); title('原图直方图');
subplot(3,2,3);
H1=adapthisteq(H);
imshow(H1); title('adapthisteq均衡后图');
subplot(3,2,4);
imhist(H1);title('adapthisteq均衡后直方图');
subplot(3,2,5);
H2=histeq(H);
imshow(H2); title('histeq均衡后图');
subplot(3,2,6);
imhist(H1); title('histeq均衡后直方图');
来源:CSDN
作者:xcjlk
链接:https://blog.csdn.net/xcjlk/article/details/104640423