学习率调整
学习率(learning rate)控制更新的步伐
学习率调整
class_LRScheduler
主要属性
optimizer 关联的优化器
last_epoch 记录epoch数
base_lrs 记录初始学习率
主要方法
step() 更新下一个epoch的学习率
get_lr() 虚函数,计算下一个epoch的学习率
1.StepLR
功能 等间隔调整学习率
主要参数
step_size 调整间隔数
gamma 调整系数
调整方式
lr = lr*gamma
2.MultiStepLR
功能 按给定间隔调整学习率
主要参数
milestones 设定调整时刻数
gamma 调整系数
调整方式
lr = lr*gamma
3.ExponentialLR
功能 按指数衰减调整学习率
主要参数
gamma 指数的底
调整方式 lr = lr*gamma ** epoch
4.CosineAnnealingLR
功能 余弦周期调整学习率
主要参数
T_max 下降周期
eta_min 学习率下限
调整方式
5.ReduceLRonPlateau
功能 监控指标,当指标不再变化则调整
主要参数:
mode min/max 两种模式
factor 调整系数
patience “耐心”,接受几次不变化
cooldown “冷却时间”,停止监控一段时间
verbose 是否打印日志
min_lr 学习率下限
eps 学习率衰减最小值
6.LambdaLR
功能 自定义调整策略
主要参数
lr_lambda function or list
学习率调整小结
1.有序调整 Step,MultiStep,Exponential,CosineAnnealing
2.自适应调整 ReduceLROnPleateau
3.自定义调整 Lambda
学习率初始化
1.设置较小数:0.01、0.001、0.0001
2.搜索最大学习率:《Cyclical Learning Rates for Training Neural Networks》
import torch
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
torch.manual_seed(1)
LR = 0.1
iteration = 10
max_epoch = 200
# ------------------------------ fake data and optimizer ------------------------------
weights = torch.randn((1), requires_grad=True)
target = torch.zeros((1))
optimizer = optim.SGD([weights], lr=LR, momentum=0.9)
# ------------------------------ 1 Step LR ------------------------------
# flag = 0
flag = 1
if flag:
scheduler_lr = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.1) # 设置学习率下降策略
lr_list, epoch_list = list(), list()
for epoch in range(max_epoch):
lr_list.append(scheduler_lr.get_lr())
epoch_list.append(epoch)
for i in range(iteration):
loss = torch.pow((weights - target), 2)
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler_lr.step()
plt.plot(epoch_list, lr_list, label="Step LR Scheduler")
plt.xlabel("Epoch")
plt.ylabel("Learning rate")
plt.legend()
plt.show()
# ------------------------------ 2 Multi Step LR ------------------------------
flag = 0
# flag = 1
if flag:
milestones = [50, 125, 160]
scheduler_lr = optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
lr_list, epoch_list = list(), list()
for epoch in range(max_epoch):
lr_list.append(scheduler_lr.get_lr())
epoch_list.append(epoch)
for i in range(iteration):
loss = torch.pow((weights - target), 2)
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler_lr.step()
plt.plot(epoch_list, lr_list, label="Multi Step LR Scheduler\nmilestones:{}".format(milestones))
plt.xlabel("Epoch")
plt.ylabel("Learning rate")
plt.legend()
plt.show()
# ------------------------------ 3 Exponential LR ------------------------------
flag = 0
# flag = 1
if flag:
gamma = 0.95
scheduler_lr = optim.lr_scheduler.ExponentialLR(optimizer, gamma=gamma)
lr_list, epoch_list = list(), list()
for epoch in range(max_epoch):
lr_list.append(scheduler_lr.get_lr())
epoch_list.append(epoch)
for i in range(iteration):
loss = torch.pow((weights - target), 2)
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler_lr.step()
plt.plot(epoch_list, lr_list, label="Exponential LR Scheduler\ngamma:{}".format(gamma))
plt.xlabel("Epoch")
plt.ylabel("Learning rate")
plt.legend()
plt.show()
# ------------------------------ 4 Cosine Annealing LR ------------------------------
flag = 0
# flag = 1
if flag:
t_max = 50
scheduler_lr = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=t_max, eta_min=0.)
lr_list, epoch_list = list(), list()
for epoch in range(max_epoch):
lr_list.append(scheduler_lr.get_lr())
epoch_list.append(epoch)
for i in range(iteration):
loss = torch.pow((weights - target), 2)
loss.backward()
optimizer.step()
optimizer.zero_grad()
scheduler_lr.step()
plt.plot(epoch_list, lr_list, label="CosineAnnealingLR Scheduler\nT_max:{}".format(t_max))
plt.xlabel("Epoch")
plt.ylabel("Learning rate")
plt.legend()
plt.show()
# ------------------------------ 5 Reduce LR On Plateau ------------------------------
# flag = 0
flag = 1
if flag:
loss_value = 0.5
accuray = 0.9
factor = 0.1
mode = "min"
patience = 10 # 若10个epoch都不下降 就更新
cooldown = 10
min_lr = 1e-4
verbose = True
scheduler_lr = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=factor, mode=mode, patience=patience,
cooldown=cooldown, min_lr=min_lr, verbose=verbose)
for epoch in range(max_epoch):
for i in range(iteration):
# train(...)
optimizer.step()
optimizer.zero_grad()
if epoch == 5:
loss_value = 0.4
scheduler_lr.step(loss_value)
# ------------------------------ 6 lambda ------------------------------
# flag = 0
flag = 1
if flag:
lr_init = 0.1
weights_1 = torch.randn((6, 3, 5, 5))
weights_2 = torch.ones((5, 5))
optimizer = optim.SGD([
{'params': [weights_1]},
{'params': [weights_2]}], lr=lr_init)
lambda1 = lambda epoch: 0.1 ** (epoch // 20)
lambda2 = lambda epoch: 0.95 ** epoch
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
lr_list, epoch_list = list(), list()
for epoch in range(max_epoch):
for i in range(iteration):
# train(...)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
lr_list.append(scheduler.get_lr())
epoch_list.append(epoch)
print('epoch:{:5d}, lr:{}'.format(epoch, scheduler.get_lr()))
plt.plot(epoch_list, [i[0] for i in lr_list], label="lambda 1")
plt.plot(epoch_list, [i[1] for i in lr_list], label="lambda 2")
plt.xlabel("Epoch")
plt.ylabel("Learning Rate")
plt.title("LambdaLR")
plt.legend()
plt.show()
来源:CSDN
作者:TongYixuan_LUT
链接:https://blog.csdn.net/qq_33357094/article/details/104576810