BIO, NIO, AIO,本身的描述都是在Java语言的基础上的。 而描述IO,我们需要从三个层面:
- 编程语言
- 实现原理
- 底层基础
从编程语言层面
BIO, NIO, AIO以Java的角度理解:
- BIO,同步阻塞式IO,简单理解:一个连接一个线程
- NIO,同步非阻塞IO,简单理解:一个请求一个线程
- AIO,异步非阻塞IO,简单理解:一个有效请求一个线程
BIO
在JDK1.4之前,用Java编写网络请求,都是建立一个ServerSocket,然后,客户端建立Socket时就会询问是否有线程可以处理,如果没有,要么等待,要么被拒绝。即:一个连接,要求Server对应一个处理线程。
public class PlainEchoServer {
public void serve(int port) throws IOException {
final ServerSocket socket = new ServerSocket(port); //Bind server to port
try {
while (true) {
//Block until new client connection is accepted
final Socket clientSocket = socket.accept();
System.out.println("Accepted connection from " + clientSocket);
//Create new thread to handle client connection
new Thread(new Runnable() {
@Override
public void run() {
try {
BufferedReader reader = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));
PrintWriter writer = new PrintWriter(clientSocket.getOutputStream(), true);
//Read data from client and write it back
while (true) {
writer.println(reader.readLine());
writer.flush();
}
} catch (IOException e) {
e.printStackTrace();
try {
clientSocket.close();
} catch (IOException ex) {
// ignore on close
}
}
}
}).start();
//Start thread
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
NIO
在Java里的由来,在JDK1.4及以后版本中提供了一套API来专门操作非阻塞I/O,我们可以在java.nio包及其子包中找到相关的类和接口。由于这套API是JDK新提供的I/O API,因此,也叫New I/O,这就是包名nio的由来。这套API由三个主要的部分组成:缓冲区(Buffers)、通道(Channels)和非阻塞I/O的核心类组成。在理解NIO的时候,需要区分,说的是New I/O还是非阻塞IO,New I/O是Java的包,NIO是非阻塞IO概念。这里讲的是后面一种。
NIO本身是基于事件驱动思想来完成的,其主要想解决的是BIO的大并发问题:在使用同步I/O的网络应用中,如果要同时处理多个客户端请求,或是在客户端要同时和多个服务器进行通讯,就必须使用多线程来处理。也就是说,将每一个客户端请求分配给一个线程来单独处理。这样做虽然可以达到我们的要求,但同时又会带来另外一个问题。由于每创建一个线程,就要为这个线程分配一定的内存空间(也叫工作存储器),而且操作系统本身也对线程的总数有一定的限制。如果客户端的请求过多,服务端程序可能会因为不堪重负而拒绝客户端的请求,甚至服务器可能会因此而瘫痪。 NIO基于Selector,当socket有流可读或可写入socket时,操作系统会相应的通知引用程序进行处理,应用再将流读取到缓冲区或写入操作系统。也就是说,这个时候,已经不是一个连接就要对应一个处理线程了,而是有效的请求,对应一个线程,当连接没有数据时,是没有工作线程来处理的。
public class PlainNioEchoServer {
public void serve(int port) throws IOException {
System.out.println("Listening for connections on port " + port);
ServerSocketChannel serverChannel = ServerSocketChannel.open();
ServerSocket ss = serverChannel.socket();
InetSocketAddress address = new InetSocketAddress(port);
//Bind server to port
ss.bind(address);
serverChannel.configureBlocking(false);
Selector selector = Selector.open();
//Register the channel with the selector to be interested in new Client connections that get accepted
serverChannel.register(selector, SelectionKey.OP_ACCEPT);
while (true) {
try {
//Block until something is selected
selector.select();
} catch (IOException ex) {
ex.printStackTrace();
//handle in a proper way
break;
}
//Get all SelectedKey instances
Set<SelectionKey> readyKeys = selector.selectedKeys();
Iterator<SelectionKey> iterator = readyKeys.iterator();
while (iterator.hasNext()) {
SelectionKey key = (SelectionKey) iterator.next();
//Remove the SelectedKey from the iterator
iterator.remove();
try {
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.channel();
//Accept the client connection
SocketChannel client = server.accept();
System.out.println("Accepted connection from " + client);
client.configureBlocking(false);
//Register connection to selector and set ByteBuffer
client.register(selector, SelectionKey.OP_WRITE | SelectionKey.OP_READ, ByteBuffer.allocate(100));
}
//Check for SelectedKey for read
if (key.isReadable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
//Read data to ByteBuffer
client.read(output);
}
//Check for SelectedKey for write
if (key.isWritable()) {
SocketChannel client = (SocketChannel) key.channel();
ByteBuffer output = (ByteBuffer) key.attachment();
output.flip();
//Write data from ByteBuffer to channel
client.write(output);
output.compact();
}
} catch (IOException ex) {
key.cancel();
try {
key.channel().close();
} catch (IOException cex) {
}
}
}
}
}
}
AIO
与NIO不同,当进行读写操作时,只须直接调用API的read或write方法即可。这两种方法均为异步的,对于读操作而言,当有流可读取时,操作系统会将可读的流传入read方法的缓冲区,并通知应用程序;对于写操作而言,当操作系统将write方法传递的流写入完毕时,操作系统主动通知应用程序。
即可以理解为,read/write方法都是异步的,完成后会主动调用回调函数。
在JDK1.7中,这部分内容被称作NIO.2,主要在java.nio.channels包下增加了下面四个异步通道:
- AsynchronousSocketChannel
- AsynchronousServerSocketChannel
- AsynchronousFileChannel
- AsynchronousDatagramChannel
其中的read/write方法,会返回一个带回调函数的对象,当执行完读取/写入操作后,直接调用回调函数。
public class PlainNio2EchoServer {
public void serve(int port) throws IOException {
System.out.println("Listening for connections on port " + port);
final AsynchronousServerSocketChannel serverChannel = AsynchronousServerSocketChannel.open();
InetSocketAddress address = new InetSocketAddress(port);
// Bind Server to port
serverChannel.bind(address);
final CountDownLatch latch = new CountDownLatch(1);
// Start to accept new Client connections. Once one is accepted the CompletionHandler will get called.
serverChannel.accept(null, new CompletionHandler<AsynchronousSocketChannel, Object>() {
@Override
public void completed(final AsynchronousSocketChannel channel, Object attachment) {
// Again accept new Client connections
serverChannel.accept(null, this);
ByteBuffer buffer = ByteBuffer.allocate(100);
// Trigger a read operation on the Channel, the given CompletionHandler will be notified once something was read
channel.read(buffer, buffer, new EchoCompletionHandler(channel));
}
@Override
public void failed(Throwable throwable, Object attachment) {
try {
// Close the socket on error
serverChannel.close();
} catch (IOException e) {
// ingnore on close
} finally {
latch.countDown();
}
}
});
try {
latch.await();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
private final class EchoCompletionHandler implements CompletionHandler<Integer, ByteBuffer> {
private final AsynchronousSocketChannel channel;
EchoCompletionHandler(AsynchronousSocketChannel channel) {
this.channel = channel;
}
@Override
public void completed(Integer result, ByteBuffer buffer) {
buffer.flip();
// Trigger a write operation on the Channel, the given CompletionHandler will be notified once something was written
channel.write(buffer, buffer, new CompletionHandler<Integer, ByteBuffer>() {
@Override
public void completed(Integer result, ByteBuffer buffer) {
if (buffer.hasRemaining()) {
// Trigger again a write operation if something is left in the ByteBuffer
channel.write(buffer, buffer, this);
} else {
buffer.compact();
// Trigger a read operation on the Channel, the given CompletionHandler will be notified once something was read
channel.read(buffer, buffer, EchoCompletionHandler.this);
}
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
try {
channel.close();
} catch (IOException e) {
// ingnore on close
}
}
});
}
@Override
public void failed(Throwable exc, ByteBuffer attachment) {
try {
channel.close();
} catch (IOException e) {
// ingnore on close
}
}
}
}
实现原理
说道实现原理,还要从操作系统的IO模型上了解 按照《Unix网络编程》的划分,IO模型可以分为:阻塞IO、非阻塞IO、IO复用、信号驱动IO和异步IO,按照POSIX标准来划分只分为两类:同步IO和异步IO。 如何区分呢?首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO、非阻塞IO、IO复用、信号驱动IO都是同步IO,如果不阻塞,而是操作系统帮你做完IO操作再将结果返回给你,那么就是异步IO。阻塞IO和非阻塞IO的区别在于第一步,发起IO请求是否会被阻塞,如果阻塞直到完成那么就是传统的阻塞IO,如果不阻塞,那么就是非阻塞IO。
收到操作系统的IO模型,又不得不提select/poll/epoll/iocp。 可以理解的说明是:在Linux 2.6以后,java NIO的实现,是通过epoll来实现的,这点可以通过jdk的源代码发现。而AIO,在windows上是通过IOCP实现的,在linux上还是通过epoll来实现的。 这里强调一点:AIO,这是I/O处理模式,而epoll等都是实现AIO的一种编程模型;换句话说,AIO是一种接口标准,各家操作系统可以实现也可以不实现。在不同操作系统上在高并发情况下最好都采用操作系统推荐的方式。Linux上还没有真正实现网络方式的AIO。
底层基础
在windows上,AIO的实现是通过IOCP来完成的,看JDK的源代码,可以发现
WindowsAsynchronousSocketChannelImpl
看实现接口:
implements Iocp.OverlappedChannel
再看实现方法:里面的read0/write0方法是native方法,调用的jvm底层实现。
在linux上,AIO的实现是通过epoll来完成的,看JDK源码,可以发现,实现源码是:
UnixAsynchronousSocketChannelImpl
看实现接口:
implements Port.PollableChannel
这是与windows最大的区别,poll的实现,在linux2.6后,默认使用epoll。
来源:oschina
链接:https://my.oschina.net/u/2325629/blog/552665