wpa_supplicant软件架构分析

三世轮回 提交于 2020-02-29 12:33:44

struct socket 数据结构 interface network callback

目录(?)[+]

  1. 启动命令

  2. wpa_supplicant 初始化流程

    1. main函数

    2. wpa_supplicant_init函数

    3. wpa_supplicant_add_iface函数

    4. wpa_supplicant_run函数

  3. Wpa_supplicant提供的接口

    1. 上行接口

      1. Dbus接口

      2. Unix domain socket 接口

    2. 下行接口

  4. Control interface commands

1. 启动命令

wpa supplicant 在启动时,启动命令可以带有很多参数,目前我们的启动命令如下:

wpa_supplicant /system/bin/wpa_supplicant -Dwext -ieth0 -c/data/wifi/wpa_supplicant.conf -f/data/wifi/wpa_log.txt

 

wpa_supplicant对于启动命令带的参数,用了两个数据结构来保存,

一个是 wpa_params, 另一个是wpa_interface.

这主要是考虑到wpa_supplicant是可以同时支持多个网络接口的。

wpa_params数据结构主要记录与网络接口无关的一些参数设置。

而每一个网络接口就用一个wpa_interface数据结构来记录。

在启动命令行中,可以用-N来指定将要描述一个新的网络接口,对于一个新的网络接口,可以用下面六个参数描述:

-i<ifname> : 网络接口名称

-c<conf>: 配置文件名称

-C<ctrl_intf>: 控制接口名称

-D<driver>: 驱动类型

-p<driver_param>: 驱动参数

-b<br_ifname>: 桥接口名称

 

2. wpa_supplicant 初始化流程

2.1. main()函数:

在这个函数中,主要做了四件事。

a. 解析命令行传进的参数。

b. 调用wpa_supplicant_init()函数,做wpa_supplicant的初始化工作。

c. 调用wpa_supplicant_add_iface()函数,增加网络接口。

d. 调用wpa_supplicant_run()函数,让wpa_supplicant真正的run起来。

 

2.2. wpa_supplicant_init()函数:

a. 打开debug 文件。

b. 注册EAP peer方法。

c. 申请wpa_global内存,该数据结构作为统领其他数据结构的一个核心, 主要包括四个部分:

wpa_supplicant *ifaces   /*每个网络接口都有一个对应的wpa_supplicant数据结构,该指针指向最近加入的一个,在wpa_supplicant数据结构中有指针指向next*/

wpa_params params   /*启动命令行中带的通用的参数*/

ctrl_iface_global_priv *ctrl_iface  /*global 的控制接口*/

ctrl_iface_dbus_priv *dbus_ctrl_iface  /*dbus 的控制接口*/

d. 设置wpa_global中的wpa_params中的参数。

e. 调用eloop_init函数将全局变量eloop中的user_data指针指向wpa_global

f. 调用wpa_supplicant_global_ctrl_iface_init函数初始化global 控制接口。

g. 调用wpa_supplicant_dbus_ctrl_iface_init函数初始化dbus 控制接口。

h. 将该daemonpid写入pid_file中。

 

2.3. wpa_supplicant_add_iface()函数:

该函数根据启动命令行中带有的参数增加网络接口, 有几个就增加几个。

a. 因为wpa_supplicant是与网络接口对应的重要的数据结构,所以,首先分配一个wpa_supplicant数据结构的内存。

b. 调用wpa_supplicant_init_iface() 函数来做网络接口的初始工作,主要包括:

设置驱动类型,默认是wext

读取配置文件,并将其中的信息设置到wpa_supplicant数据结构中的conf 指针指向的数据结构,它是一个wpa_config类型;

命令行设置的控制接口ctrl_interface和驱动参数driver_param覆盖配置文件里设置,命令行中的优先;

拷贝网络接口名称和桥接口名称到wpa_config数据结构;

对于网络配置块有两个链表描述它,一个是 config->ssid,它按照配置文件中的顺序依次挂载在这个链表上,还有一个是pssid,它是一个二级指针,指向一个指针数组,该指针数组按照优先级从高到底的顺序依次保存wpa_ssid指针,相同优先级的在同一链表中挂载。

c. 调用wpa_supplicant_init_iface2() 函数,主要包括:

调用wpa_supplicant_init_eapol()函数来初始化eapol

调用相应类型的driverinit()函数;

设置driverparam参数;

调用wpa_drv_get_ifname()函数获得网络接口的名称,对于wext类型的driver,没有这个接口函数;

调用wpa_supplicant_init_wpa()函数来初始化wpa,并做相应的初始化工作;

调用wpa_supplicant_driver_init()函数,来初始化driver接口参数;在该函数的最后,会

wpa_s->prev_scan_ssid = BROADCAST_SSID_SCAN;

wpa_supplicant_req_scan(wpa_s, interface_count, 100000);

来主动发起scan

调用wpa_supplicant_ctrl_iface_init()函数,来初始化控制接口;对于UNIX SOCKET这种方式,其本地socket文件是由配置文件里的ctrl_interface参数指定的路径加上网络接口名称;

 

2.4. wpa_supplicant_run()函数:

初始化完成之后,让wpa_supplicantmain event loop run起来。

wpa_supplicant中,有许多与外界通信的socket,它们都是需要注册到eloop event模块中的,具体地说,就是在eloop_sock_table中增加一项记录,其中包括了sock_fd, handle, eloop_data, user_data

eloop event模块就是将这些socket组织起来,统一管理,然后在eloop_run中利用select机制来管理socket的通信。

 

3. Wpa_supplicant提供的接口

从通信层次上划分,wpa_supplicant提供向上的控制接口 control interface,用于与其他模块(如UI)进行通信,其他模块可以通过control interface 来获取信息或下发命令。Wpa_supplicant通过socket通信机制实现下行接口,与内核进行通信,获取信息或下发命令。

 

3.1 上行接口

Wpa_supplicant提供两种方式的上行接口。一种基于传统dbus机制实现与其他进程间的IPC通信;另一种通过Unix domain socket机制实现进程间的IPC通信。

3.1.1 Dbus接口

该接口主要在文件“ctrl_iface_dbus.h”,“ctrl_iface_dbus.c”,“ctrl_iface_dbus_handler.h”和“ctrl_iface_dbus_handler.c”中实现,提供一些基本的控制方法。

 

DBusMessage * wpas_dbus_new_invalid_iface_error(DBusMessage *message);

 

DBusMessage * wpas_dbus_global_add_interface(DBusMessage *message,

                                        struct wpa_global *global);

 

DBusMessage * wpas_dbus_global_remove_interface(DBusMessage *message,

                                          struct wpa_global *global);

 

DBusMessage * wpas_dbus_global_get_interface(DBusMessage *message,

                                        struct wpa_global *global);

 

DBusMessage * wpas_dbus_global_set_debugparams(DBusMessage *message,

                                          struct wpa_global *global);

 

DBusMessage * wpas_dbus_iface_scan(DBusMessage *message,

                               struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_scan_results(DBusMessage *message,

                                      struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_bssid_properties(DBusMessage *message,

                                    struct wpa_supplicant *wpa_s,

                                    struct wpa_scan_res *res);

 

DBusMessage * wpas_dbus_iface_capabilities(DBusMessage *message,

                                      struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_add_network(DBusMessage *message,

                                     struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_remove_network(DBusMessage *message,

                                        struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_set_network(DBusMessage *message,

                                     struct wpa_supplicant *wpa_s,

                                     struct wpa_ssid *ssid);

 

DBusMessage * wpas_dbus_iface_enable_network(DBusMessage *message,

                                        struct wpa_supplicant *wpa_s,

                                        struct wpa_ssid *ssid);

 

DBusMessage * wpas_dbus_iface_disable_network(DBusMessage *message,

                                         struct wpa_supplicant *wpa_s,

                                         struct wpa_ssid *ssid);

 

DBusMessage * wpas_dbus_iface_select_network(DBusMessage *message,

                                             struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_disconnect(DBusMessage *message,

                                    struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_set_ap_scan(DBusMessage *message,

                                          struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_set_smartcard_modules(

       DBusMessage *message, struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_get_state(DBusMessage *message,

                                   struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_get_scanning(DBusMessage *message,

                                      struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_set_blobs(DBusMessage *message,

                                    struct wpa_supplicant *wpa_s);

 

DBusMessage * wpas_dbus_iface_remove_blobs(DBusMessage *message,

                                      struct wpa_supplicant *wpa_s);

 

3.1.2 Unix domain socket 接口

该接口主要在文件“wpa_ctrl.h”,“wpa_ctrl.c”,“ctrl_iface_unix.c”,“ctrl_iface.h”和“ctrl_iface.c”实现。

 

1wpa_ctrl.h”,“wpa_ctrl.c”完成对control interface的封装,对外提供统一的接口。其主要的工作是通过Unix domain socket建立一个control interface client结点,与作为serverwpa_supplicant结点通信。

 

主要功能函数:

struct wpa_ctrl * wpa_ctrl_open(const char *ctrl_path);

/* 建立并初始化一个Unix domain socketclient结点,并与作为serverwpa_supplicant结点绑定 */


void wpa_ctrl_close(struct wpa_ctrl *ctrl);

/* 撤销并销毁已建立的Unix domain socketclient结点 */

 

int wpa_ctrl_request(struct wpa_ctrl *ctrl, const char *cmd, size_t cmd_len,

                   char *reply, size_t *reply_len,

                   void (*msg_cb)(char *msg, size_t len));

 

/* 用户模块直接调用该函数对wpa_supplicant发送命令并获取所需信息

 * 可以发送的命令如附件1所示 */

Note:

       Wpa_supplicant 提供两种由外部模块获取信息的方式:一种是外部模块通过发送request 命令然后获取response的问答模式,另一种是wpa_supplicant主动向外部发送event事件,由外部模块监听接收。

 

       一般的常用做法是外部模块通过调用wpa_ctrl_open()两次,建立两个control interface接口,一个为ctrl interface,用于发送命令,获取信息,另一个为monitor interface,用于监听接收来自于wpa_supplicantevent时间。此举可以降低通信的耦合性,避免responseevent的相互干扰。

 

int wpa_ctrl_attach(struct wpa_ctrl *ctrl);

/* 注册 某个 control interface 作为 monitor interface */

 

int wpa_ctrl_detach(struct wpa_ctrl *ctrl);

/* 撤销某个 monitor interface 普通的 control interface  */

 

int wpa_ctrl_pending(struct wpa_ctrl *ctrl)

/* 判断是否有挂起的event 事件 */

 

int wpa_ctrl_recv(struct wpa_ctrl *ctrl, char *reply, size_t *reply_len);

/* 获取挂起的event 事件 */

 

2ctrl_iface_unix.c”实现wpa_supplicantUnix domain socket通信机制中server结点,完成对client结点的响应。

       其中最主要的两个函数为:

static void wpa_supplicant_ctrl_iface_receive(int sock, void *eloop_ctx,

                                         void *sock_ctx)

/* 接收并解析client发送request命令,然后根据不同的命令调用底层不同的处理函数;

 * 然后将获得response结果回馈到 client 结点。

 */

 

static void wpa_supplicant_ctrl_iface_send(struct ctrl_iface_priv *priv,

                                      int level, const char *buf,

                                      size_t len)

/* 向注册的monitor interfaces 主动发送event事件 */

 

3ctrl_iface.h”和“ctrl_iface.c”主要实现了各种request命令的底层处理函数。

 

3.2 下行接口

Wpa_supplicant提供的下行接口主要用于和kerneldriver)进行通信,下发命令和获取信息。

Wpa_supplicant下行接口主要包括三种重要的接口:

1.    PF_INET socket接口,主要用于向kernel 发送ioctl命令,控制并获取相应信息。

2.    PF_NETLINK socket接口,主要用于接收kernel发送上来的event 事件。

3.    PF_PACKET socket接口,主要用于向driver传递802.1X报文。

 

主要涉及到的文件包括:“driver.h”,“drivers.c”,“driver_wext.h”,“driver_wext.c”,“l2_packet.h”和“l2_packet_linux.c”。其中“driver.h”,“drivers.c”,“driver_wext.h”和“driver_wext.c”实现PF_INET socket接口和PF_NETLINK socket接口;“l2_packet.h”和“l2_packet_linux.c”实现PF_PACKET socket接口。

 

1driver.h”,“drivers.c”主要用于封装底层差异对外显示一个相同的wpa_driver_ops接口。Wpa_supplicant可支持atmel, Broadcom, ipw, madwifi, ndis, nl80211, wext等多种驱动。

其中一个最主要的数据结构为wpa_driver_ops, 其定义了driver相关的各种操作接口。

 

2driver_wext.h”,“driver_wext.c”实现了wext形式的wpa_driver_ops并创建了PF_INET socket接口和PF_NETLINK socket接口,然后通过这两个接口完成与kernel的信息交互。

 

Wext提供的一个主要数据结构为:

struct wpa_driver_wext_data {

       void *ctx;

       int event_sock;

       int ioctl_sock;

       int mlme_sock;

       char ifname[IFNAMSIZ + 1];

       int ifindex;

       int ifindex2;

       int if_removed;

       u8 *assoc_req_ies;

       size_t assoc_req_ies_len;

       u8 *assoc_resp_ies;

       size_t assoc_resp_ies_len;

       struct wpa_driver_capa capa;

       int has_capability;

       int we_version_compiled;

 

       /* for set_auth_alg fallback */

       int use_crypt;

       int auth_alg_fallback;

 

       int operstate;

 

       char mlmedev[IFNAMSIZ + 1];

 

       int scan_complete_events;

};

其中event_sock PF_NETLINK socket接口,ioctl_sockPF_INET socket借口。

 

Driver_wext.c实现了大量底层处理函数用于实现wpa_driver_ops操作参数,其中比较重要的有:

void * wpa_driver_wext_init(void *ctx, const char *ifname)

/* 初始化wpa_driver_wext_data 数据结构,并创建PF_NETLINK socket PF_INET socket 接口 */

 

void wpa_driver_wext_deinit(void *priv)

/* 销毁wpa_driver_wext_data 数据结构,PF_NETLINK socket PF_INET socket 接口 */

 

static void wpa_driver_wext_event_receive(int sock, void *eloop_ctx,

                                     void *sock_ctx)

/* 处理kernel主动发送的event事件的 callback 函数 */

 

最后,将实现的操作函数映射到一个全局的wpa_driver_ops类型数据结构 wpa_driver_wext_ops中。

 

const struct wpa_driver_ops wpa_driver_wext_ops = {

       .name = "wext",

       .desc = "Linux wireless extensions (generic)",

       .get_bssid = wpa_driver_wext_get_bssid,

       .get_ssid = wpa_driver_wext_get_ssid,

       .set_wpa = wpa_driver_wext_set_wpa,

       .set_key = wpa_driver_wext_set_key,

       .set_countermeasures = wpa_driver_wext_set_countermeasures,

       .set_drop_unencrypted = wpa_driver_wext_set_drop_unencrypted,

       .scan = wpa_driver_wext_scan,

       .get_scan_results2 = wpa_driver_wext_get_scan_results,

       .deauthenticate = wpa_driver_wext_deauthenticate,

       .disassociate = wpa_driver_wext_disassociate,

       .set_mode = wpa_driver_wext_set_mode,

       .associate = wpa_driver_wext_associate,

       .set_auth_alg = wpa_driver_wext_set_auth_alg,

       .init = wpa_driver_wext_init,

       .deinit = wpa_driver_wext_deinit,

       .add_pmkid = wpa_driver_wext_add_pmkid,

       .remove_pmkid = wpa_driver_wext_remove_pmkid,

       .flush_pmkid = wpa_driver_wext_flush_pmkid,

       .get_capa = wpa_driver_wext_get_capa,

       .set_operstate = wpa_driver_wext_set_operstate,

};

 

3l2_packet.h”和“l2_packet_linux.c”主要用于实现PF_PACKET socket接口,通过该接口,wpa_supplicant可以直接将802.1X packet发送到L2层,而不经过TCP/IP协议栈。

 

其中主要的功能函数为:

struct l2_packet_data * l2_packet_init(

       const char *ifname, const u8 *own_addr, unsigned short protocol,

       void (*rx_callback)(void *ctx, const u8 *src_addr,

                         const u8 *buf, size_t len),

       void *rx_callback_ctx, int l2_hdr);

/* 创建并初始化PF_PACKET socket接口,其中rx_callback 为从L2接收到的packet 处理callback函数 */

 

void l2_packet_deinit(struct l2_packet_data *l2);

/* 销毁 PF_PACKET socket接口 */

 

int l2_packet_send(struct l2_packet_data *l2, const u8 *dst_addr, u16 proto,

                 const u8 *buf, size_t len);

/* L2packet发送函数,wpa_supplicant用此发送L2 802.1X packet  */

 

static void l2_packet_receive(int sock, void *eloop_ctx, void *sock_ctx);

/*  L2packet接收函数,接收来自L2层数据后,将其发送到上层  */

4. Control interface commands

       PING

       MIB

       STATUS

       STATUS-VERBOSE

       PMKSA

       SET <variable> <valus>

       LOGON

       LOGOFF

       REASSOCIATE

       RECONNECT

       PREAUTH <BSSID>

       ATTACH

       DETACH

       LEVEL <debug level>

       RECONFIGURE

       TERMINATE

       BSSID <network id> <BSSID>

       LIST_NETWORKS

       DISCONNECT

       SCAN

       SCAN_RESULTS

       BSS

       SELECT_NETWORK <network id>

       ENABLE_NETWORK <network id>

       DISABLE_NETWORK <network id>

       ADD_NETWORK

       REMOVE_NETWORK <network id>

       SET_NETWORK <network id> <variable> <value>

       GET_NETWORK <network id> <variable>

       SAVE_CONFIG

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!