什么是线程池
线程池(thread pool)是一种线程使用模式。线程过多或者频繁创建和销毁线程会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着管理器分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价,以及保证了线程的可复用性。线程池不仅能够保证内核的充分利用,还能防止过分调度。
线程池原理
预先创建预定数量的线程,将多个任务加入到任务队列。类似于生产者消费者,多个线程相当于消费者,一个任务队列充当生产者。当任务队列被塞入任务时,线程们就去竞争这些任务,但每次只有一个线程能够得到任务,该任务执行完成后,线程可以释放出来去承接下一个任务,这样保证多个任务可以并发地执行。
线程池的原理如图所示
一个任务队列有n个任务,可以通过线程池的调度分配到m个线程上去并发执行
线程池实现
机遇C++11 的线程库编写
thread_pool.hpp
#ifndef _THREAD_POOL_H_
#define _THREAD_POOL_H_
#include <thread>
#include <mutex>
#include <atomic>
#include <condition_variable>
#include <functional>
#include <vector>
#include <queue>
class ThreadPool
{
public:
using Task = std::function<void()>;
explicit ThreadPool(int num): _thread_num(num), _is_running(false)
{}
~ThreadPool()
{
if (_is_running)
stop();
}
void start()
{
_is_running = true;
// start threads
for (int i = 0; i < _thread_num; i++)
_threads.emplace_back(std::thread(&ThreadPool::work, this));
}
void stop()
{
{
// stop thread pool, should notify all threads to wake
std::unique_lock<std::mutex> lk(_mtx);
_is_running = false;
_cond.notify_all(); // must do this to avoid thread block
}
// terminate every thread job
for (std::thread& t : _threads)
{
if (t.joinable())
t.join();
}
}
void appendTask(const Task& task)
{
if (_is_running)
{
std::unique_lock<std::mutex> lk(_mtx);
_tasks.push(task);
_cond.notify_one(); // wake a thread to to the task
}
}
private:
void work()
{
printf("begin work thread: %d\n", std::this_thread::get_id());
// every thread will compete to pick up task from the queue to do the task
while (_is_running)
{
Task task;
{
std::unique_lock<std::mutex> lk(_mtx);
if (!_tasks.empty())
{
// if tasks not empty,
// must finish the task whether thread pool is running or not
task = _tasks.front();
_tasks.pop(); // remove the task
}
else if (_is_running && _tasks.empty())
_cond.wait(lk);
}
if (task)
task(); // do the task
}
printf("end work thread: %d\n", std::this_thread::get_id());
}
public:
// disable copy and assign construct
ThreadPool(const ThreadPool&) = delete;
ThreadPool& operator=(const ThreadPool& other) = delete;
private:
std::atomic_bool _is_running; // thread pool manager status
std::mutex _mtx;
std::condition_variable _cond;
int _thread_num;
std::vector<std::thread> _threads;
std::queue<Task> _tasks;
};
#endif // !_THREAD_POOL_H_
main.cpp
#include <iostream>
#include <chrono>
#include "thread_pool.hpp"
void fun1()
{
std::cout << "working in thread " << std::this_thread::get_id() << std::endl;
}
void fun2(int x)
{
std::cout << "task " << x << " working in thread " << std::this_thread::get_id() << std::endl;
}
int main(int argc, char* argv[])
{
ThreadPool thread_pool(3);
thread_pool.start();
std::this_thread::sleep_for(std::chrono::milliseconds(500));
for (int i = 0; i < 6; i++)
{
//thread_pool.appendTask(fun1);
thread_pool.appendTask(std::bind(fun2, i));
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
thread_pool.stop();
getchar();
return 0;
}
执行结果
begin work thread: 10492
begin work thread: 15024
begin work thread: 11684
task 0 working in thread 10492
task 1 working in thread 15024
task 2 working in thread 11684
task 3 working in thread 10492
task 4 working in thread 15024
task 5 working in thread 11684
end work thread: 11684
end work thread: 10492
end work thread: 15024
实现总结:
任务调度需要加锁和互斥
每次添加一个新的任务就唤醒一个线程
线程池析构时限唤醒所有线程,然后终止线程回收资源
没有实现线程的优先级调度
来源:CSDN
作者:xupeng1644
链接:https://blog.csdn.net/xp178171640/article/details/104570896