为什么需要每次计算梯度都要清空

我与影子孤独终老i 提交于 2020-02-26 14:46:12

为什么需要每次计算梯度都要清空

待办

根据pytorch中的backward()函数的计算,当网络参量进行反馈时,梯度是被积累的而不是被替换掉;但是在每一个batch时毫无疑问并不需要将两个batch的梯度混合起来累积,因此这里就需要每个batch设置一遍zero_grad 了。

其实这里还可以补充的一点是,如果不是每一个batch就清除掉原有的梯度,而是比如说两个batch再清除掉梯度,这是一种变相提高batch_size的方法,对于计算机硬件不行,但是batch_size可能需要设高的领域比较适合,比如目标检测模型的训练。

关于这一点可以参考:https://discuss.pytorch.org/t/why-do-we-need-to-set-the-gradients-manually-to-zero-in-pytorch/4903/3

关于backward()的计算可以参考:https://discuss.pytorch.org/t/how-to-use-the-backward-functions-for-multiple-losses/1826/5

————————————————
版权声明:本文为CSDN博主「xiaoxifei」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xiaoxifei/article/details/83474724

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!