ZhaoWei-2020-01-27

[亡魂溺海] 提交于 2020-02-26 03:35:45

缓存穿透


正常情况下,我们去查询数据都是存在。那么请求去查询一条数据库中根本就不存在的数据,也就是缓存和数据库都查询不到这条数据,但是请求每次都会打到数据库上面去。这种查询不存在数据的现象我们称为缓存穿透。

解决办法

缓存空值
之所以会发生穿透,就是因为缓存中没有存储这些空数据的key。从而导致每次查询都到数据库去了。
那么我们就可以为这些key对应的值设置为null 丢到缓存里面去。后面再出现查询这个key 的请求的时候,直接返回null 。
这样,就不用在到数据库中去走一圈了,但是别忘了设置过期时间。

维护key值

提供一个能够迅速判断请求是否有效的拦截机制,比如使用布隆过滤器,吧合法的key值维护起来,如果请求带的key值不合法,则直接返回。


BloomFilter
BloomFilter 类似于一个hbase set 用来判断某个元素(key)是否存在于某个集合中。
这种方式在大数据场景应用比较多,比如 Hbase 中使用它去判断数据是否在磁盘上。还有在爬虫场景判断url 是否已经被爬取过。
这种方案可以加在第一种方案中,在缓存之前在加一层 BloomFilter ,在查询的时候先去 BloomFilter 去查询 key 是否存在,如果不存在就直接返回,存在再走查缓存 -> 查 DB。
流程图如下:

 

缓存击穿

缓存击穿是我们可能遇到的第二个使用缓存方案可能遇到的问题。在平常高并发的系统中,大量的请求同时查询一个 key 时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去。这种现象我们成为缓存击穿。

 

上面的现象是多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。
其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。

 

缓存雪崩

缓存雪崩的情况是说,当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到DB上面。结果就是DB 称不住,挂掉。

 

假设用的是redis缓存,在往存数据的时候,把每个Key的失效时间都加个随机值就,这样可以保证数据不会在同一时间大面积失效
如果 Redis是集群部署,将热点数据均匀分布在不同的redis库中也能避免全部失效的问题,失效时间随机
或者设置热点数据永远不过期,有更新操作就更新缓存就好了

 
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!