问题
I am working on the some kind of the 2D Regression Deep network with keras, but the network has constant output for every datasets, even I test with handmade dataset in this code I feed the network with a constant 2d values and the output is linear valu of the X (2*X/100) but the out put is constant.
import resource
import glob
import gc
rsrc = resource.RLIMIT_DATA
soft, hard = resource.getrlimit(rsrc)
print ('Soft limit starts as :', soft)
resource.setrlimit(rsrc, (4 * 1024 * 1024 * 1024, hard)) # limit to four giga bytes
soft, hard = resource.getrlimit(rsrc)
print ('Soft limit changed to :', soft)
from keras.models import Sequential
import keras.optimizers
from keras.layers import Dense, Dropout, Activation, Flatten, BatchNormalization
from keras.layers import Convolution2D, MaxPooling2D,AveragePooling2D
import numpy as np
import random
from keras.utils import plot_model
sample_size = 1
batch_size = 50
input_shape = (int(720 / 4), int(1280 / 4), sample_size * 5)
# model
model = Sequential()
model.add(BatchNormalization(input_shape=input_shape))
model.add(Convolution2D(128, (3, 3), activation='relu', dim_ordering="tf", padding="same",kernel_initializer='random_uniform'))
model.add(Convolution2D(128, (3, 3), activation='sigmoid', dim_ordering="tf", padding="same",kernel_initializer='random_uniform'))
model.add(AveragePooling2D(pool_size=(4, 4), dim_ordering="tf"))
model.add(Convolution2D(256, (3, 3), activation='sigmoid', dim_ordering="tf", padding="same",kernel_initializer='random_uniform'))
model.add(Convolution2D(256, (3, 3), activation='sigmoid', dim_ordering="tf", padding="same",kernel_initializer='random_uniform'))
model.add(AveragePooling2D(pool_size=(4, 4), dim_ordering="tf"))
model.add(Convolution2D(512, (3, 3), activation='sigmoid', dim_ordering="tf", padding="same",kernel_initializer='random_uniform'))
model.add(Convolution2D(512, (3, 3), activation='sigmoid', dim_ordering="tf", padding="same",kernel_initializer='random_uniform'))
model.add(AveragePooling2D(pool_size=(4, 4), dim_ordering="tf"))
model.add(Flatten())
model.add(Dense(4096, activation='relu',kernel_initializer='random_uniform'))
#model.add(Dropout(0.5))
model.add(Dense(512, activation='sigmoid',kernel_initializer='random_uniform'))
model.add(Dense(1, activation='sigmoid',kernel_initializer='random_uniform'))
model.compile(loss='mean_absolute_error',
optimizer='adam',
metrics=['mae','mse'])
model.summary()
plot_model(model,to_file='model.png')
def generate_tr(batch_size, is_training=False):
x=np.linspace(0, 10, num=5000).reshape(-1, 1)
counter = 0
print 'start'
while 1:
samples=np.zeros((batch_size, 720/4, 1280/4, 5))
labels=[]
for t in range (batch_size):
i = int(random.randint(0, 4999))
for b in range(sample_size):
samples[t, :,:,b*5:b*5+5] = np.random.rand(720/4,1280/4,5)/10+x[i]
labels.append((2*x[i])/100)
counter += 1
print counter #, labels
yield ((samples), np.asarray(labels))
tt = model.fit_generator(generate_tr(batch_size, True), steps_per_epoch=100, epochs=10,
use_multiprocessing=False, verbose=2)
score = model.predict_generator(generate_tr(batch_size, True), steps=30)
the output is always average of all of the values (here is .10)
do you know why?
来源:https://stackoverflow.com/questions/45830331/why-keras-2d-regression-network-has-constant-output