问题
Here is my code:
import pandas as pd
import numpy as np
df = pd.DataFrame({ 'var1': ['a', 'b', 'c',np.nan, np.nan],
'var2': [1, 2, np.nan , 4, np.nan]
})
conditions = [
(not(pd.isna(df["var1"]))) & (not(pd.isna(df["var2"]))),
(pd.isna(df["var1"])) & (pd.isna(df["var2"]))]
choices = ["No missing", "Both missing"]
df['Result'] = np.select(conditions, choices, default=np.nan)
Output:
File "C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py", line 1478, in __nonzero__
f"The truth value of a {type(self).__name__} is ambiguous. "
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Problem is with line (not(pd.isna(df["var1"]))) & (not(pd.isna(df["var2"])))
. This line should give TRUE
when in both var1
and var2
in not a NaN
value. Problem here is with negation, because with conditions without negation there is no problem.
Question: How can to correct (not(pd.isna(df["var1"]))) & (not(pd.isna(df["var2"])))
line so in case when in both var1
and var2
in not a NaN
value the condition should give TRUE
?
回答1:
Try:
conditions = [(~pd.isna(df["var1"]) & ~pd.isna(df["var2"])),
(pd.isna(df["var1"]) & pd.isna(df["var2"]))]
来源:https://stackoverflow.com/questions/60099141/negation-in-np-select-condition