1 卷积神经网络基础
1.1 二维卷积层
1.1.1 二维互相关运算
二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。
下面我们用corr2d
函数实现二维互相关运算,它接受输入数组X
与核数组K
,并输出数组Y
。
import torch import torch.nn as nn def corr2d(X, K): H, W = X.shape h, w = K.shape Y = torch.zeros(H - h + 1, W - w + 1) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j] = (X[i: i + h, j: j + w] * K).sum() return Y
构造上图中的输入数组X
、核数组K
来验证二维互相关运算的输出。
X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) K = torch.tensor([[0, 1], [2, 3]]) Y = corr2d(X, K) print(Y)
1.1.2 二维卷积层
二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。
class Conv2D(nn.Module): def __init__(self, kernel_size): super(Conv2D, self).__init__() self.weight = nn.Parameter(torch.randn(kernel_size)) self.bias = nn.Parameter(torch.randn(1)) def forward(self, x): return corr2d(x, self.weight) + self.bias
下面我们看一个例子,我们构造一张\(6 \times 8\)的图像,中间4列为黑(0),其余为白(1),希望检测到颜色边缘。我们的标签是一个\(6 \times 7\)的二维数组,第2列是1(从1到0的边缘),第6列是-1(从0到1的边缘)。
X = torch.ones(6, 8) Y = torch.zeros(6, 7) X[:, 2: 6] = 0 Y[:, 1] = 1 Y[:, 5] = -1 print(X) print(Y)
我们希望学习一个\(1 \times 2\)卷积层,通过卷积层来检测颜色边缘。
conv2d = Conv2D(kernel_size=(1, 2)) step = 30 lr = 0.01 for i in range(step): Y_hat = conv2d(X) l = ((Y_hat - Y) ** 2).sum() l.backward() # 梯度下降 conv2d.weight.data -= lr * conv2d.weight.grad conv2d.bias.data -= lr * conv2d.bias.grad # 梯度清零 conv2d.weight.grad.zero_() conv2d.bias.grad.zero_() if (i + 1) % 5 == 0: print('Step %d, loss %.3f' % (i + 1, l.item())) print(conv2d.weight.data) print(conv2d.bias.data)
来源:https://www.cnblogs.com/KaifengGuan/p/12332125.html