问题
I am new to Deep Learning and Tensorflow. I retrained a pretrained tensorflow inceptionv3 model as saved_model.pb to recognize different type of images but when I tried to use the fie with below code.
with tf.Session() as sess:
with tf.gfile.FastGFile("tensorflow/trained/saved_model.pb",'rb') as f:
graph_def = tf.GraphDef()
tf.Graph.as_graph_def()
graph_def.ParseFromString(f.read())
g_in=tf.import_graph_def(graph_def)
LOGDIR='/log'
train_writer=tf.summary.FileWriter(LOGDIR)
train_writer.add_graph(sess.graph)
it gives me this error -
File "testing.py", line 7, in <module>
graph_def.ParseFromString(f.read())
google.protobuf.message.DecodeError: Error parsing message
I tried many solution I can find for this problem and modules in tensorflow/python/tools which uses the graph_def.ParseFromString(f.read()) function are giving me same error. Please tell me how to solve this or tell me the way in which I can avoid ParseFromString(f.read()) function. Any help would be appreciated. Thank you!
回答1:
I am assuming that you saved your trained model using tf.saved_model.Builder provided by TensorFlow, in which case you could possibly do something like:
Load model
export_path = './path/to/saved_model.pb'
# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
'''
You can provide 'tags' when saving a model,
in my case I provided, 'serve' tag
'''
tf.saved_model.loader.load(sess, ['serve'], export_path)
graph = tf.get_default_graph()
# print your graph's ops, if needed
print(graph.get_operations())
'''
In my case, I named my input and output tensors as
input:0 and output:0 respectively
'''
y_pred = sess.run('output:0', feed_dict={'input:0': X_test})
To give some more context here, this is how I saved my model which can be loaded as above.
Save model
x = tf.get_default_graph().get_tensor_by_name('input:0')
y = tf.get_default_graph().get_tensor_by_name('output:0')
export_path = './models/'
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
signature = tf.saved_model.predict_signature_def(
inputs={'input': x}, outputs={'output': y}
)
# using custom tag instead of: tags=[tf.saved_model.tag_constants.SERVING]
builder.add_meta_graph_and_variables(sess=obj.sess,
tags=['serve'],
signature_def_map={'predict': signature})
builder.save()
This will save your protobuf ('saved_model.pb') in the said folder ('models' here) which can then be loaded as stated above.
回答2:
Have you passed as_text=False when saving a model? Please have a look at: TF save/restore graph fails at tf.GraphDef.ParseFromString()
回答3:
Please use the frozen_inference_graph.pb to load the model, than to use the saved_model.pb
Model_output
- saved_model
- saved_model.pb
- checkpoint
- frozen_inference_graph.pb # Main model
- model.ckpt.data-00000-of-00001
- model.ckpt.index
- model.ckpt.meta
- pipeline.config
来源:https://stackoverflow.com/questions/49117938/unable-to-use-trained-tensorflow-model