softmax与分类模型
softmax的基本概念
分类问题
一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度。
图像中的4像素分别记为 x1,x2,x3,x4 。
假设真实标签为狗、猫或者鸡,这些标签对应的离散值为 y1,y2,y3。
我们通常使用离散的数值来表示类别,例如 y1=1,y2=2,y3=3 。
权重矢量
o1=x1w11+x2w21+x3w31+x4w41+b1
o2=x1w12+x2w22+x3w32+x4w42+b2
o3=x1w13+x2w23+x3w33+x4w43+b3
神经网络图
下图用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出 o1,o2,o3 的计算都要依赖于所有的输入 x1,x2,x3,x4 ,softmax回归的输出层也是一个全连接层。
来源:CSDN
作者:ClimberSky
链接:https://blog.csdn.net/ClimberSky/article/details/104317542