动手学深度学习之循环神经网络基础

时光毁灭记忆、已成空白 提交于 2020-02-14 22:52:38

循环神经网络

本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。其目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量HH,用HtH_t表示HH在时间步tt的值。HtH_t的计算基于XtX_tHt1H_{t-1},可以认为HtH_t记录了到当前字符为止的序列信息,利用HtH_t对序列的下一个字符进行预测。

#### 循环神经网络的构造

假设XtRn×dX_t\in R^{n\times d}是时间步tt的小批量输入,HtRn×hH_t\in R^{n\times h}是该时间步的隐藏变量,则:
Ht=ϕ(XtWxh+Ht1Whh+bh)H_t=\phi(X_tW_{xh}+H_{t-1}W_{hh}+b_h)其中,WxhRd×hW_{xh}\in R^{d\times h}WhhRh×hW_{hh}\in R^{h\times h}bhR1×hb_{h}\in R^{1\times h}ϕ\phi函数是非线性激活函数。由于引入了Ht1WhhH_{t-1}W_{hh}HtH_t能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。由于HtH_t的计算基于Ht1H_{t-1},上式的计算是循环的,使用循环计算的网络即循环神经网络(recurrent neural network)。

在时间步tt,输出层的输出为:
Ot=HtWhq+bqO_t=H_{t}W_{hq}+b_q其中,WhqRh×qW_{hq}\in R^{h\times q}bqR1×qb_{q}\in R^{1\times q}

从零开始实现循环神经网络

尝试从零开始实现一个基于字符级循环神经网络的语言模型,这里使用周杰伦的歌词作为语料,首先读入数据:

import torch
import torch.nn as nn
import time
import math
import sys
sys.path.append("/home/kesci/input")
import d2l_jay9460 as d2l
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
one-hot向量

这里需要采用one-hot向量将字符表示成向量。假设词典大小是NN,每次字符对应一个从00N1N-1的唯一的索引,则该字符的向量是一个长度为NN的向量,若字符的索引是ii,则该向量的第ii个位置为11,其他位置为00。下面分别展示了索引为0022的one-hot向量,向量长度等于词典大小。

def one_hot(x, n_class, dtype=torch.float32):
    result = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)  # shape: (n, n_class)
    result.scatter_(1, x.long().view(-1, 1), 1)  # result[i, x[i, 0]] = 1
    return result
    
x = torch.tensor([0, 2])
x_one_hot = one_hot(x, vocab_size)
print(x_one_hot)
print(x_one_hot.shape)
print(x_one_hot.sum(axis=1))
tensor([[1., 0., 0.,  ..., 0., 0., 0.],
        [0., 0., 1.,  ..., 0., 0., 0.]])
torch.Size([2, 1027])
tensor([1., 1.])

每次采样的小批量的形状是(批量大小, 时间步数)。下面的函数将这样的小批量变换成数个形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。也就是说,时间步tt的输入为XtRn×dX_t\in R^{n\times d},其中nn为批量大小,dd为词向量大小,即one-hot向量长度(词典大小)。

def to_onehot(X, n_class):
    return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]

X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)
5 torch.Size([2, 1027])
初始化模型参数
num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
# num_inputs: d
# num_hiddens: h, 隐藏单元的个数是超参数
# num_outputs: q

def get_params():
    def _one(shape):
        param = torch.zeros(shape, device=device, dtype=torch.float32)
        nn.init.normal_(param, 0, 0.01) # 非零元素采用正态分布N(0, 0.01)初始化.
        return torch.nn.Parameter(param)

    # 隐藏层参数
    W_xh = _one((num_inputs, num_hiddens))
    W_hh = _one((num_hiddens, num_hiddens))
    b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device))
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device))
    return (W_xh, W_hh, b_h, W_hq, b_q)
定义模型

函数rnn用循环的方式依次完成循环神经网络每个时间步的计算。

def rnn(inputs, state, params):
    # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

函数init_rnn_state初始化隐藏变量,这里的返回值是一个元组。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )
'''
做个简单的测试来观察输出结果的个数(时间步数),
以及第一个时间步的输出层输出的形状和隐藏状态的形状。
'''
print(X.shape)
print(num_hiddens)
print(vocab_size)
state = init_rnn_state(X.shape[0], num_hiddens, device)
inputs = to_onehot(X.to(device), vocab_size)
params = get_params()
outputs, state_new = rnn(inputs, state, params)
print(len(inputs), inputs[0].shape)
print(len(outputs), outputs[0].shape)
print(len(state), state[0].shape)
print(len(state_new), state_new[0].shape)
torch.Size([2, 5])
256
1027
5 torch.Size([2, 1027])
5 torch.Size([2, 1027])
1 torch.Size([2, 256])
1 torch.Size([2, 256])
裁剪梯度

循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设把所有模型参数的梯度拼接成一个向量gg,并设裁剪的阈值是θ\theta。裁剪后的梯度min(θg,1)gmin(\frac {\theta}{||g||},1)gL2L_2范数不超过θ\theta

def grad_clipping(params, theta, device):
    norm = torch.tensor([0.0], device=device)
    for param in params:
        norm += (param.grad.data ** 2).sum()
    norm = norm.sqrt().item()
    if norm > theta:
        for param in params:
            param.grad.data *= (theta / norm)
定义预测函数

以下函数基于前缀prefix(含有数个字符的字符串)来预测接下来的num_chars个字符。这个函数稍显复杂,其中将循环神经单元rnn设置成了函数参数,这样在后面小节介绍其他循环神经网络时能重复使用这个函数。

def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,
                num_hiddens, vocab_size, device, idx_to_char, char_to_idx):
    state = init_rnn_state(1, num_hiddens, device)
    output = [char_to_idx[prefix[0]]]   # output记录prefix加上预测的num_chars个字符
    for t in range(num_chars + len(prefix) - 1):
        # 将上一时间步的输出作为当前时间步的输入
        X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)
        # 计算输出和更新隐藏状态
        (Y, state) = rnn(X, state, params)
        # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(Y[0].argmax(dim=1).item())
    return ''.join([idx_to_char[i] for i in output])
'''
先测试一下predict_rnn函数。根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。
因为模型参数为随机值,所以预测结果也是随机的。
'''
predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,
            device, idx_to_char, char_to_idx)
'分开濡时食提危踢拆田唱母'
困惑度

通常使用困惑度(perplexity)来评价语言模型的好坏。困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

  • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
  • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
  • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size。

定义模型训练函数

跟之前章节的模型训练函数相比,这里的模型训练函数有以下几点不同:

  • 使用困惑度评价模型;
  • 在迭代模型参数前裁剪梯度;
  • 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。
def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, is_random_iter, num_epochs, num_steps,
                          lr, clipping_theta, batch_size, pred_period,
                          pred_len, prefixes):
    if is_random_iter:
        data_iter_fn = d2l.data_iter_random
    else:
        data_iter_fn = d2l.data_iter_consecutive
    '''
    相邻采样的特点:两个相邻的batch在训练数据上是连续的。如果使用相邻采样,只需要
    在每个epoch开始的时候初始化隐藏状态。当在训练过程中,同一个epoch,随着batch的
    增大,损失函数关于隐藏变量的梯度传播得更远,计算开销更大为了减小计算开销,在每
    个batch开始的时候,将隐藏状态从计算图中分离出来(使用detach()函数)
    '''
    params = get_params()
    loss = nn.CrossEntropyLoss()

    for epoch in range(num_epochs):
        if not is_random_iter:  # 如使用相邻采样,在epoch开始时初始化隐藏状态
            state = init_rnn_state(batch_size, num_hiddens, device)
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
        for X, Y in data_iter:
            if is_random_iter:  # 如使用随机采样,在每个小批量更新前初始化隐藏状态
                state = init_rnn_state(batch_size, num_hiddens, device)
            else:  # 否则需要使用detach函数从计算图分离隐藏状态
                for s in state:
                    s.detach_()
            # inputs是num_steps个形状为(batch_size, vocab_size)的矩阵
            inputs = to_onehot(X, vocab_size)
            # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
            (outputs, state) = rnn(inputs, state, params)
            # 拼接之后形状为(num_steps * batch_size, vocab_size)
            outputs = torch.cat(outputs, dim=0)
            # Y的形状是(batch_size, num_steps),转置后再变成形状为
            # (num_steps * batch_size,)的向量,这样跟输出的行一一对应
            y = torch.flatten(Y.T)
            # 使用交叉熵损失计算平均分类误差
            l = loss(outputs, y.long())
            
            # 梯度清0
            if params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            l.backward()
            grad_clipping(params, clipping_theta, device)  # 裁剪梯度
            d2l.sgd(params, lr, 1)  # 因为误差已经取过均值,梯度不用再做平均
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
                    num_hiddens, vocab_size, device, idx_to_char, char_to_idx))
训练模型并创作歌词
'''
设置模型超参数。根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。
每过50个迭代周期便根据当前训练的模型创作一段歌词。
'''
num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
# 采用随机采样训练模型并创作歌词
train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, True, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)
# 采用相邻采样训练模型并创作歌词
train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, False, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)
# ------------------------------随机采样------------------------------
epoch 50, perplexity 65.808092, time 0.78 sec
 - 分开 我想要这样 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我
 - 不分开 别颗去 一颗两 三颗四 一颗四 三颗四 一颗四 一颗四 一颗四 一颗四 一颗四 一颗四 一颗四 一
epoch 100, perplexity 9.794889, time 0.72 sec
 - 分开 一直在美留 谁在它停 在小村外的溪边 默默等  什么 旧你在依旧 我有儿有些瘦 世色我遇见你是一场
 - 不分开吗 我不能再想 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 我不 
epoch 150, perplexity 2.772557, time 0.80 sec
 - 分开 有直在不妥 有话它停留 蜥蝪横怕落 不爽就 旧怪堂 是属于依 心故之 的片段 有一些风霜 老唱盘 
 - 不分开吗 然后将过不 我慢 失些  如  静里回的太快 想通 却又再考倒我 说散 你想很久了吧?的我 从等
epoch 200, perplexity 1.601744, time 0.73 sec
 - 分开 那只都它满在我面妈 捏成你的形状啸而过 或愿说在后能 让梭时忆对着轻轻 我想就这样牵着你的手不放开
 - 不分开期 然后将过去 慢慢温习 让我爱上你 那场悲剧 是你完美演出的一场戏 宁愿心碎哭泣 再狠狠忘记 不是
epoch 250, perplexity 1.323342, time 0.78 sec
 - 分开 出愿段的哭咒的天蛦丘好落 拜托当血穿永杨一定的诗篇 我给你的爱写在西元前 深埋在美索不达米亚平原 
 - 不分开扫把的胖女巫 用拉丁文念咒语啦啦呜 她养的黑猫笑起来像哭 啦啦啦呜 我来了我 在我感外的溪边河口默默
# ------------------------------相邻采样------------------------------
epoch 50, perplexity 60.294393, time 0.74 sec
 - 分开 我想要你想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我不要再想 我
 - 不分开 我想要你 你有了 别不我的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我疯狂的可爱女人 坏坏的让我
epoch 100, perplexity 7.141162, time 0.72 sec
 - 分开 我已要再爱 我不要再想 我不 我不 我不要再想 我不 我不 我不要 爱情我的见快就像龙卷风 离能开
 - 不分开柳 你天黄一个棍 后知哈兮 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮 
epoch 150, perplexity 2.090277, time 0.73 sec
 - 分开 我已要这是你在著 不想我都做得到 但那个人已经不是我 没有你在 我却多难熬  没有你在我有多难熬多
 - 不分开觉 你已经离 我想再好 这样心中 我一定带我 我的完空 不你是风 一一彩纵 在人心中 我一定带我妈走
epoch 200, perplexity 1.305391, time 0.77 sec
 - 分开 我已要这样牵看你的手 它一定实现它一定像现 载著你 彷彿载著阳光 不管到你留都是晴天 蝴蝶自在飞力
 - 不分开觉 你已经离开我 不知不觉 我跟了这节奏 后知后觉 又过了一个秋 后知后觉 我该好好生活 我该好好生
epoch 250, perplexity 1.230800, time 0.79 sec
 - 分开 我不要 是你看的太快了悲慢 担心今手身会大早 其么我也睡不着  昨晚梦里你来找 我才  原来我只想
 - 不分开觉 你在经离开我 不知不觉 你知了有节奏 后知后觉 后知了一个秋 后知后觉 我该好好生活 我该好好生

循环神经网络的pytorch实现

定义模型

使用Pytorch中的nn.RNN来构造循环神经网络。本节主要关注nn.RNN的以下几个构造函数参数:

  • input_size - The number of expected features in the input x(输入单元个数)
  • hidden_size – The number of features in the hidden state h(隐藏单元个数)
  • nonlinearity – The non-linearity to use. Can be either ‘tanh’ or ‘relu’. Default: ‘tanh’(激活函数)
  • batch_first – If True, then the input and output tensors are provided as (batch_size, num_steps, input_size). Default: False

这里的batch_first决定了输入的形状,使用默认的参数False,对应的输入形状是(num_steps, batch_size, input_size)。

forward函数的参数为:

  • input of shape (num_steps, batch_size, input_size): tensor containing the features of the input sequence.
  • h_0(等价于前面的state) of shape (num_layers * num_directions (与深度循环神经网络有关), batch_size, hidden_size (与双向循环神经网络有关)): tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. If the RNN is bidirectional, num_directions should be 2, else it should be 1.

forward函数的返回值是:

  • output of shape (num_steps, batch_size, num_directions *hidden_size): tensor containing the output features (h_t) from the last layer of the RNN, for each t.(各个时间步隐藏状态的值)
  • h_n of shape (num_layers * num_directions, batch_size, hidden_size): tensor containing the hidden state for t = num_steps.(最后一个时间步隐藏状态的值)
# 构造一个nn.RNN实例 看一下输出的形状
rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens)
num_steps, batch_size = 35, 2
X = torch.rand(num_steps, batch_size, vocab_size)
state = None
Y, state_new = rnn_layer(X, state)
print(Y.shape, state_new.shape)
torch.Size([35, 2, 256]) torch.Size([1, 2, 256])
# 定义一个完整的基于循环神经网络的语言模型
class RNNModel(nn.Module):
    def __init__(self, rnn_layer, vocab_size):
        super(RNNModel, self).__init__()
        self.rnn = rnn_layer
        self.hidden_size = rnn_layer.hidden_size * (2 if rnn_layer.bidirectional else 1) 
        self.vocab_size = vocab_size
        self.dense = nn.Linear(self.hidden_size, vocab_size)

    def forward(self, inputs, state):
        # inputs.shape: (batch_size, num_steps)
        X = to_onehot(inputs, vocab_size)
        X = torch.stack(X)  # X.shape: (num_steps, batch_size, vocab_size)
        hiddens, state = self.rnn(X, state)
        hiddens = hiddens.view(-1, hiddens.shape[-1])  # hiddens.shape: (num_steps * batch_size, hidden_size)
        output = self.dense(hiddens)
        return output, state
'''
类似的需要实现一个预测函数,与前面的区别在于前向计算和初始化隐藏状态。
'''
def predict_rnn_pytorch(prefix, num_chars, model, vocab_size, device, idx_to_char,
                      char_to_idx):
    state = None
    output = [char_to_idx[prefix[0]]]  # output记录prefix加上预测的num_chars个字符
    for t in range(num_chars + len(prefix) - 1):
        X = torch.tensor([output[-1]], device=device).view(1, 1)
        (Y, state) = model(X, state)  # 前向计算不需要传入模型参数
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(Y.argmax(dim=1).item())
    return ''.join([idx_to_char[i] for i in output])
# 使用权重为随机值的模型来预测一次
model = RNNModel(rnn_layer, vocab_size).to(device)
predict_rnn_pytorch('分开', 10, model, vocab_size, device, idx_to_char, char_to_idx)
'分开胸呵以轮轮轮轮轮轮轮'
# 使用相邻采样实现训练函数
def train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes):
    loss = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    model.to(device)
    for epoch in range(num_epochs):
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = d2l.data_iter_consecutive(corpus_indices, batch_size, num_steps, device) # 相邻采样
        state = None
        for X, Y in data_iter:
            if state is not None:
                # 使用detach函数从计算图分离隐藏状态
                if isinstance (state, tuple): # LSTM, state:(h, c)  
                    state[0].detach_()
                    state[1].detach_()
                else: 
                    state.detach_()
            (output, state) = model(X, state) # output.shape: (num_steps * batch_size, vocab_size)
            y = torch.flatten(Y.T)
            l = loss(output, y.long())
            
            optimizer.zero_grad()
            l.backward()
            grad_clipping(model.parameters(), clipping_theta, device)
            optimizer.step()
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]
        

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn_pytorch(
                    prefix, pred_len, model, vocab_size, device, idx_to_char,
                    char_to_idx))

num_epochs, batch_size, lr, clipping_theta = 250, 32, 1e-3, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                            corpus_indices, idx_to_char, char_to_idx,
                            num_epochs, num_steps, lr, clipping_theta,
                            batch_size, pred_period, pred_len, prefixes)
epoch 50, perplexity 9.405654, time 0.52 sec
 - 分开始一起 三步四步望著天 看星星 一颗两颗三颗四颗 连成线背著背默默许下心愿  一枝杨柳 你的那我 在
 - 不分开 爱情你的手 一人的老斑鸠 腿短毛不多 快使用双截棍 哼哼哈兮 快使用双截棍 哼哼哈兮 快使用双截棍
epoch 100, perplexity 1.255020, time 0.54 sec
 - 分开 我人了的屋我 一定令它心仪的母斑鸠 爱像一阵风 吹完美主  这样 还人的太快就是学怕眼口让我碰恨这
 - 不分开不想我多的脑袋有问题 随便说说 其实我早已经猜透看透不想多说 只是我怕眼泪撑不住 不懂 你的黑色幽默
epoch 150, perplexity 1.064527, time 0.53 sec
 - 分开 我轻外的溪边 默默在一心抽离 有话不知不觉 一场悲剧 我对不起 藤蔓植物的爬满了伯爵的坟墓 古堡里
 - 不分开不想不多的脑 有教堂有你笑 我有多烦恼  没有你烦 有有样 别怪走 快后悔没说你 我不多难熬 我想就
epoch 200, perplexity 1.033074, time 0.53 sec
 - 分开 我轻外的溪边 默默在一心向昏 的愿  古无着我只能 一个黑远 这想太久 这样我 不要再是你打我妈妈
 - 不分开你只会我一起睡著 样 娘子却只想你和汉堡 我想要你的微笑每天都能看到  我知道这里很美但家乡的你更美
epoch 250, perplexity 1.047890, time 0.68 sec
 - 分开 我轻多的漫 却已在你人演  想要再直你 我想要这样牵着你的手不放开 爱可不可以简简单单没有伤害 你
 - 不分开不想不多的假  已无能为力再提起 决定中断熟悉 然后在这里 不限日期 然后将过去 慢慢温习 让我爱上
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!