1.先序遍历
根据前序遍历访问的顺序,优先访问根结点,然后再分别访问左孩子和右孩子。即对于任一结点,其可看做是根结点,因此可以直接访问,访问完之后,若其左孩子不为空,按相同规则访问它的左子树;当访问其左子树时,再访问它的右子树。因此其处理过程如下:
对于任一结点P:
1)访问结点P,并将结点P入栈;
2)判断结点P的左孩子是否为空,若为空,则取栈顶结点并进行出栈操作,并将栈顶结点的右孩子置为当前的结点P,循环至1);若不为空,则将P的左孩子置为当前的结点P;
3)直到P为NULL并且栈为空,则遍历结束。
vector<int> PreOrder(TreeNode* root){ vector<int>res; if (!root)return res; stack<TreeNode*>ss; TreeNode* cur = root; while (cur || !ss.empty()){ if (cur){ res.push_back(cur->val); ss.push(cur); cur = cur->left; } else{ cur = ss.top(); cur = cur->right; ss.pop(); } } return res; }
2.中序遍历
根据中序遍历的顺序,对于任一结点,优先访问其左孩子,而左孩子结点又可以看做一根结点,然后继续访问其左孩子结点,直到遇到左孩子结点为空的结点才进行访问,然后按相同的规则访问其右子树。因此其处理过程如下:
对于任一结点P,
1)若其左孩子不为空,则将P入栈并将P的左孩子置为当前的P,然后对当前结点P再进行相同的处理;
2)若其左孩子为空,则取栈顶元素并进行出栈操作,访问该栈顶结点,然后将当前的P置为栈顶结点的右孩子;
3)直到P为NULL并且栈为空则遍历结束。
vector<int> inorderTraversal(TreeNode* root) { vector<int>res; if (!root)return res; stack<TreeNode*>ss; TreeNode*cur = root; while (!ss.empty()||cur) { if (cur){ ss.push(cur); cur = cur->left; } else{ cur = ss.top(); res.push_back(cur->val); ss.pop(); cur = cur->right; } } return res; }
3.后序遍历
思路:要保证根结点在左孩子和右孩子访问之后才能访问,因此对于任一结点P,先将其入栈。如果P不存在左孩子和右孩子,则可以直接访问它;或者P存 在左孩子或者右孩子,但是其左孩子和右孩子都已被访问过了,则同样可以直接访问该结点。若非上述两种情况,则将P的右孩子和左孩子依次入栈,这样就保证了 每次取栈顶元素的时候,左孩子在右孩子前面被访问,左孩子和右孩子都在根结点前面被访问。
/*better*/ vector<int> postorderTraversal(TreeNode* root) { vector<int>res; stack<TreeNode*>ss; TreeNode* cur=NULL; TreeNode* pre=NULL; if(!root)return res; ss.push(root); while(!ss.empty()){ cur=ss.top(); if(cur->left==NULL&&cur->right==NULL||((pre!=NULL)&&(pre==cur->left||pre==cur->right))){ res.push_back(cur->val); pre=cur; ss.pop(); } else{ if(cur->right)ss.push(cur->right); if(cur->left)ss.push(cur->left); } } return res; }
来源:https://www.cnblogs.com/inception6-lxc/p/8890611.html