[数据结构与算法]第6章 递归

偶尔善良 提交于 2020-02-07 02:28:41

个人博客文章地址

6.1 递归需要遵守的重要规则

  1. 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
  2. 方法的局部变量是独立的,不会相互影响, 比如n变量
  3. 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
  4. 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)
  5. 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。

6.2 递归-迷宫问题

在这里插入图片描述

  • 说明:
    1. 小球得到的路径,和程序员设置的找路策略有关即:找路的上下左右的顺序相关
    2. 再得到小球路径时,可以先使用(下右上左),再改成(上右下左),看看路径是不是有变化
    3. 测试回溯现象
    4. 思考: 如何求出最短路径?
  • 代码实现:
public class MiGong {

	public static void main(String[] args) {
		// 先创建一个二维数组,模拟迷宫
		// 地图
		int[][] map = new int[8][7];
		// 使用1 表示墙
		// 上下全部置为1
		for (int i = 0; i < 7; i++) {
			map[0][i] = 1;
			map[7][i] = 1;
		}

		// 左右全部置为1
		for (int i = 0; i < 8; i++) {
			map[i][0] = 1;
			map[i][6] = 1;
		}
		//设置挡板, 1 表示
		map[3][1] = 1;
		map[3][2] = 1;
//		map[1][2] = 1;
//		map[2][2] = 1;
		
		// 输出地图
		System.out.println("地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
		
		//使用递归回溯给小球找路
		//setWay(map, 1, 1);
		setWay2(map, 1, 1);
		
		//输出新的地图, 小球走过,并标识过的递归
		System.out.println("小球走过,并标识过的 地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
		
	}
	
	//使用递归回溯来给小球找路
	//说明
	//1. map 表示地图
	//2. i,j 表示从地图的哪个位置开始出发 (1,1)
	//3. 如果小球能到 map[6][5] 位置,则说明通路找到.
	//4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙  ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
	//5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
	/**
	 * 
	 * @param map 表示地图
	 * @param i 从哪个位置开始找
	 * @param j 
	 * @return 如果找到通路,就返回true, 否则返回false
	 */
	public static boolean setWay(int[][] map, int i, int j) {
		if(map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if(map[i][j] == 0) { //如果当前这个点还没有走过
				//按照策略 下->右->上->左  走
				map[i][j] = 2; // 假定该点是可以走通.
				if(setWay(map, i+1, j)) {//向下走
					return true;
				} else if (setWay(map, i, j+1)) { //向右走
					return true;
				} else if (setWay(map, i-1, j)) { //向上
					return true;
				} else if (setWay(map, i, j-1)){ // 向左走
					return true;
				} else {
					//说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}
	
	//修改找路的策略,改成 上->右->下->左
	public static boolean setWay2(int[][] map, int i, int j) {
		if(map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if(map[i][j] == 0) { //如果当前这个点还没有走过
				//按照策略 上->右->下->左
				map[i][j] = 2; // 假定该点是可以走通.
				if(setWay2(map, i-1, j)) {//向上走
					return true;
				} else if (setWay2(map, i, j+1)) { //向右走
					return true;
				} else if (setWay2(map, i+1, j)) { //向下
					return true;
				} else if (setWay2(map, i, j-1)){ // 向左走
					return true;
				} else {
					//说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}

}

6.3 递归-八皇后问题(回溯算法)

  • 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

  • 八皇后问题算法思路分析

    1. 第一个皇后先放第一行第一列
    2. 第二个皇后放在第二行第一列、然后判断是否OK, 如果不OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适
    3. 继续第三个皇后,还是第一列、第二列……直到第8个皇后也能放在一个不冲突的位置,算是找到了一个正确解
    4. 当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.
    5. 然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4的步骤 【示意图】
  • 说明:理论上应该创建一个二维数组来表示棋盘,但是实际上可以通过算法,用一个一维数组即可解决问题. arr[8] = {0 , 4, 7, 5, 2, 6, 1, 3} //对应arr 下标 表示第几行,即第几个皇后,arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列

  • 代码实现:

public class Queue8 {

	//定义一个max表示共有多少个皇后
	int max = 8;
	//定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3} 
	int[] array = new int[max];
	static int count = 0;
	static int judgeCount = 0;
	public static void main(String[] args) {
		//测试一把 , 8皇后是否正确
		Queue8 queue8 = new Queue8();
		queue8.check(0);
		System.out.printf("一共有%d解法", count);
		System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w
		
	}
	
	
	
	//编写一个方法,放置第n个皇后
	//特别注意: check 是 每一次递归时,进入到check中都有  for(int i = 0; i < max; i++),因此会有回溯
	private void check(int n) {
		if(n == max) {  //n = 8 , 其实8个皇后就既然放好
			print();
			return;
		}
		
		//依次放入皇后,并判断是否冲突
		for(int i = 0; i < max; i++) {
			//先把当前这个皇后 n , 放到该行的第1列
			array[n] = i;
			//判断当放置第n个皇后到i列时,是否冲突
			if(judge(n)) { // 不冲突
				//接着放n+1个皇后,即开始递归
				check(n+1); //  
			}
			//如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
		}
	}
	
	//查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
	/**
	 * 
	 * @param n 表示第n个皇后
	 * @return
	 */
	private boolean judge(int n) {
		judgeCount++;
		for(int i = 0; i < n; i++) {
			// 说明
			//1. array[i] == array[n]  表示判断 第n个皇后是否和前面的n-1个皇后在同一列
			//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
			// n = 1  放置第 2列 1 n = 1 array[1] = 1
			// Math.abs(1-0) == 1  Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
			//3. 判断是否在同一行, 没有必要,n 每次都在递增
			if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) {
				return false;
			}
		}
		return true;
	}
	
	//写一个方法,可以将皇后摆放的位置输出
	private void print() {
		count++;
		for (int i = 0; i < array.length; i++) {
			System.out.print(array[i] + " ");
		}
		System.out.println();
	}

}

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!