题目
前置
斯特林数\(\Longrightarrow\)斯特林数及反演总结
做法
相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\begin{Bmatrix}k-1\\n-s\end{Bmatrix}\]
然后就开始推式:
\[\begin{aligned}\\
Sum&=\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\begin{Bmatrix}n-s\\k-1\end{Bmatrix}\\
&=\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!}\frac{(k-i-1)^{n-2}}{(k-i-1)!}\\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}(k-i-1)^{n-s}\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(\sum\limits_{s=1}^nC_{n-1}^{s-1}(k-i-1)^{n-s}+\sum\limits_{s=1}^n (s-1)C_{n-1}^{s-1}(k-i-1)^{n-s})\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(\sum\limits_{s=1}^nC_{n-1}^{s-1}(k-i-1)^{n-s}+(n-1)\sum\limits_{s=1}^n C_{n-2}^{s-2}(k-i-1)^{n-s})\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}((k-i)^{n-1}+(n-1)(k-i)^{n-2})\\
&=\sum\limits_{i=0}^{k-1}\frac{(-1)^i}{i!(k-i-1)!}(k-i)^{n-2}(k-i+n-1)\\
\end{aligned}\]
然而。。。这。。。比赛的时候能推出这么一大堆式子的**是神仙吧
于是有种更简单的方法:\(|S|\sum w_i\)
我们可以理解为:划分好集合后,每个点都对当前点有\(w_i\)的贡献
自己对自己的贡献显然就是\(\begin{Bmatrix}n\\k\end{Bmatrix}\)
其他点对本身的贡献就是先分好\(k\)个集合,再放进去,\((n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix}\)
\[Ans=\sum\limits_{i=1}^nw_i(\begin{Bmatrix}n\\k\end{Bmatrix}+(n-1)\begin{Bmatrix}n-1\\k\end{Bmatrix})\]
Code
有关斯特林数及反演的更多姿势\(\Longrightarrow\)点这里
#include<cstdio> typedef int LL; const LL mod=1e9+7,maxn=2e5+9; inline LL Read(){ LL x(0),f(1); char c=getchar(); while(c<'0' || c>'9'){ if(c=='-') f=-1; c=getchar(); } while(c>='0' && c<='9'){ x=(x<<3)+(x<<1)+c-'0'; c=getchar(); } return x*f; } inline LL Pow(LL base,LL b){ LL ret(1); while(b){ if(b&1) ret=1ll*ret*base%mod; base=1ll*base*base%mod; b>>=1; }return ret; } LL fav[maxn],fac[maxn]; inline LL Get(LL n,LL m){ LL ret(0); for(LL i=0;i<=m;++i) ret=1ll*(ret+1ll*(i&1?mod-1:1)*fav[i]%mod*Pow(m-i,n)%mod*fav[m-i]%mod)%mod; return ret; } LL n,sum,k; LL w[maxn]; int main(){ n=Read(); k=Read(); for(LL i=1;i<=n;++i){ w[i]=Read(); (sum+=w[i])%=mod; } fac[0]=fac[1]=1; for(LL i=2;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod; fav[n]=Pow(fac[n],mod-2); for(LL i=n;i>=1;--i) fav[i-1]=1ll*fav[i]*i%mod; printf("%d\n",1ll*sum*((1ll*Get(n,k)%mod+1ll*(n-1)*Get(n-1,k)%mod)%mod)%mod); return 0; }
来源:https://www.cnblogs.com/y2823774827y/p/10708872.html