1. 深度优先搜索介绍
图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。
它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。
显然,深度优先搜索是一个递归的过程。
2. 深度优先搜索图解
2.1 无向图的深度优先搜索
下面以"无向图"为例,来对深度优先搜索进行演示。
对上面的图G1进行深度优先遍历,从顶点A开始。
第1步:访问A。
第2步:访问(A的邻接点)C。
在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,C在"D和F"的前面,因此,先访问C。
第3步:访问(C的邻接点)B。
在第2步访问C之后,接下来应该访问C的邻接点,即"B和D"中一个(A已经被访问过,就不算在内)。而由于B在D之前,先访问B。
第4步:访问(C的邻接点)D。
在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到访问C的另一个邻接点D。
第5步:访问(A的邻接点)F。
前面已经访问了A,并且访问完了"A的邻接点B的所有邻接点(包括递归的邻接点在内)";因此,此时返回到访问A的另一个邻接点F。
第6步:访问(F的邻接点)G。
第7步:访问(G的邻接点)E。
因此访问顺序是:A -> C -> B -> D -> F -> G -> E
邻接矩阵:
class StackX{ private int maxSize ; private int[] st; private int top; public StackX(int s) { maxSize = s; st = new int[maxSize]; top = -1; } public void push(int j) { st[++top] = j; } public int pop() { return st[top--]; } public int peek() { return st[top]; } public boolean isEmpty() { return (top==-1); } } class Vertex{ public char label; public boolean wasVisited; public Vertex(char lab) { label = lab; wasVisited = false; } } class UDGraph{ private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private StackX theStack; public UDGraph() {//无向图 vertexList = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theStack = new StackX(MAX_VERTS); } public void addVertex(char lab) { vertexList[nVerts++] = new Vertex(lab); } public void addEdge(int start,int end) { adjMat[start][end] = 1; adjMat[end][start] = 1;//无向图 } public void displayVertex(int v) { System.out.println(vertexList[v].label); } public void dfs() { vertexList[0].wasVisited = true; displayVertex(0); theStack.push(0); while(!theStack.isEmpty()) { int v = getAdjUnvisitedVertex(theStack.peek()); if(v == -1) theStack.pop(); else { vertexList[v].wasVisited = true; displayVertex(v); theStack.push(v); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v) { for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixUDG_DFS{ public static void main(String[] args) { UDGraph theGraph = new UDGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(0, 3); // AD theGraph.addEdge(0, 4); // AE theGraph.addEdge(1, 2); // BC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(2, 4); // CE theGraph.addEdge(3, 4); // DE System.out.println("dbs"); theGraph.dfs(); } }
邻接链表:
import java.util.ArrayList; class StackX{ private int maxSize ; private Vertex[] st; private int top; public StackX(int s) { maxSize = s; st = new Vertex[maxSize]; top = -1; } public void push(Vertex vertex) { st[++top] = vertex; } public Vertex pop() { return st[top--]; } public Vertex peek() { return st[top]; } public boolean isEmpty() { return (top==-1); } } class Vertex{ public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab) { this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge{ public int dest; public Edge nextEdge; public Edge(int dest) { this.dest= dest; nextEdge = null; } } class UDGraph{ private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private StackX theStack; private ArrayList<Vertex> dfs; public UDGraph() { vertexList = new Vertex[MAX_VERTS]; theStack = new StackX(20); dfs = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex) { //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end) { Edge startEdge = new Edge(start); Edge endEdge = new Edge(end); Edge edge2 = vertexList[start].firstEdge; if(edge2==null) { vertexList[start].firstEdge = endEdge; }else { while(edge2.nextEdge!=null) edge2 = edge2.nextEdge; edge2.nextEdge = endEdge; } Edge edge3 = vertexList[end].firstEdge; if(edge3==null) { vertexList[end].firstEdge = startEdge; }else { while(edge3.nextEdge!=null) edge3 = edge3.nextEdge; edge3.nextEdge = startEdge; } } public void displayVertex(int v) { System.out.println(vertexList[v].label); } //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex) { Edge currentEdge = vertex.firstEdge; while(currentEdge != null ) { if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void dfs() { vertexList[0].wasVisited = true; dfs.add(vertexList[0]); theStack.push(vertexList[0]); Vertex vertex; while(!theStack.isEmpty()) { vertex = getAdjUnvisitedVertex(theStack.peek()); if(vertex == null) theStack.pop(); else { vertex.wasVisited = true; dfs.add(vertex); theStack.push(vertex); } } //遍历完成,清楚所有访问标志位 for(int i=0;i<nVerts;i++) vertexList[i].wasVisited = false; } public void displayDFS() { for(int i=0;i<dfs.size();i++) System.out.print(dfs.get(i).label); System.out.println(""); } } public class ListUDG_DFS2 { public static void main(String[] args) { UDGraph theGraph = new UDGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1); //AB theGraph.addEdge(0, 2); //AC theGraph.addEdge(0, 3); //AD theGraph.addEdge(1, 4); //BE theGraph.addEdge(2, 5); //CF theGraph.addEdge(3, 4); //DE theGraph.addEdge(1, 6); //BG theGraph.addEdge(3, 5); System.out.println("dbs"); theGraph.dfs(); theGraph.displayDFS(); } }
2.2 有向图的深度优先搜索
下面以"有向图"为例,来对深度优先搜索进行演示。
对上面的图G2进行深度优先遍历,从顶点A开始。
第1步:访问A。
第2步:访问B。
在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。
第3步:访问C。
在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。
第4步:访问E。
接下来访问C的出边的另一个顶点,即顶点E。
第5步:访问D。
接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。
第6步:访问F。
接下应该回溯"访问A的出边的另一个顶点F"。
第7步:访问G。
因此访问顺序是:A -> B -> C -> E -> D -> F -> G
邻接矩阵:
class StackX{ private int maxSize ; private int[] st; private int top; public StackX(int s) { maxSize = s; st = new int[maxSize]; top = -1; } public void push(int j) { st[++top] = j; } public int pop() { return st[top--]; } public int peek() { return st[top]; } public boolean isEmpty() { return (top==-1); } } class Vertex{ public char label; public boolean wasVisited; public Vertex(char lab) { label = lab; wasVisited = false; } } class DGraph{ private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private StackX theStack; public DGraph() { vertexList = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theStack = new StackX(MAX_VERTS); } public void addVertex(char lab) { vertexList[nVerts++] = new Vertex(lab); } public void addEdge(int start,int end) { adjMat[start][end] = 1; } public void displayVertex(int v) { System.out.println(vertexList[v].label); } public void dfs() { vertexList[0].wasVisited = true; displayVertex(0); theStack.push(0); while(!theStack.isEmpty()) { int v = getAdjUnvisitedVertex(theStack.peek()); if(v == -1) theStack.pop(); else { vertexList[v].wasVisited = true; displayVertex(v); theStack.push(v); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v) { for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixDG_DFS { public static void main(String[] args) { DGraph theGraph = new DGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(4, 2); System.out.println("dbs"); theGraph.dfs(); } }
邻接链表 :
import java.util.ArrayList; class StackX{ private int maxSize ; private Vertex[] st; private int top; public StackX(int s) { maxSize = s; st = new Vertex[maxSize]; top = -1; } public void push(Vertex vertex) { st[++top] = vertex; } public Vertex pop() { return st[top--]; } public Vertex peek() { return st[top]; } public boolean isEmpty() { return (top==-1); } } class Vertex{ public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab) { this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge{ public int dest; public Edge nextEdge; public Edge(int dest) { this.dest= dest; nextEdge = null; } } class DGraph{ private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private StackX theStack; private ArrayList<Vertex> dfs; public DGraph() { vertexList = new Vertex[MAX_VERTS]; theStack = new StackX(20); dfs = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex) { //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end) { Edge endEdge = new Edge(end); Edge currentEdge = vertexList[start].firstEdge; if(currentEdge==null) { vertexList[start].firstEdge = endEdge; }else { while(currentEdge.nextEdge!=null) currentEdge = currentEdge.nextEdge; currentEdge.nextEdge = endEdge; } } public void displayVertex(int v) { System.out.println(vertexList[v].label); } //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex) { Edge currentEdge = vertex.firstEdge; while(currentEdge != null ) { if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void dfs() { vertexList[0].wasVisited = true; dfs.add(vertexList[0]); theStack.push(vertexList[0]); Vertex vertex; while(!theStack.isEmpty()) { vertex = getAdjUnvisitedVertex(theStack.peek()); if(vertex == null) theStack.pop(); else { vertex.wasVisited = true; dfs.add(vertex); theStack.push(vertex); } } //遍历完成,清楚所有访问标志位 for(int i=0;i<nVerts;i++) vertexList[i].wasVisited = false; } public void displayDFS() { for(int i=0;i<dfs.size();i++) System.out.print(dfs.get(i).label); System.out.println(""); } } public class ListDG_DFS { public static void main(String[] args) { DGraph theGraph = new DGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1); //AB theGraph.addEdge(0, 2); //AC theGraph.addEdge(0, 3); //AD theGraph.addEdge(1, 4); //BE theGraph.addEdge(2, 5); //CF theGraph.addEdge(3, 4); //DE theGraph.addEdge(1, 6); //BG theGraph.addEdge(3, 5); //DF System.out.println("dbs"); theGraph.dfs(); theGraph.displayDFS(); } }
广度优先搜索的图文介绍
1. 广度优先搜索介绍
广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。
它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。
换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。
2. 广度优先搜索图解
2.1 无向图的广度优先搜索
下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。
第1步:访问A。
第2步:依次访问C,D,F。
在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。
第3步:依次访问B,G。
在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。
第4步:访问E。
在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。
因此访问顺序是:A -> C -> D -> F -> B -> G -> E
邻接矩阵:
class Queue { private final int maxSize; private int[] queArray; private int front; private int rear; public Queue(int s) { maxSize = s; queArray = new int[maxSize]; front = rear = 0; } public boolean insert(int j) { if(isFull()) return false; else { queArray[rear] = j; rear=(rear+1)%maxSize; return true; } } public int remove() { if(isEmpty()) return -1; else { int value = queArray[front]; front = (front+1)%maxSize; return value; } } public int peekFront() { if(!isEmpty()) return queArray[front]; else return -1; } public boolean isEmpty() { return (front==rear); } public boolean isFull() { return (front==(rear+1)%maxSize); } } class Vertex{ public char label; public boolean wasVisited; public Vertex(char lab) { label = lab; wasVisited = false; } } class UDGraph{ private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private Queue theQueue; public UDGraph() { vertexList = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theQueue = new Queue(MAX_VERTS); } public void addVertex(char lab) { vertexList[nVerts++] = new Vertex(lab); } public void addEdge(int start,int end) { adjMat[start][end] = 1; adjMat[end][start] = 1;//无向图 } public void displayVertex(int v){ System.out.println(vertexList[v].label); } public void bfs(){ vertexList[0].wasVisited = true; displayVertex(0); theQueue.insert(0); int v2; while(!theQueue.isEmpty()) { int v1 = theQueue.remove(); while((v2 = getAdjUnvisitedVertex(v1)) != -1) { vertexList[v2].wasVisited = true; displayVertex(v2); theQueue.insert(v2); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v) { for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixUDG_BFS { public static void main(String[] args) { UDGraph theGraph = new UDGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(4, 2); theGraph.bfs(); System.out.println(); } }
邻接链表:
import java.util.ArrayList; class Queue { private final int maxSize; private Vertex[] queArray; private int front; private int rear; public Queue(int s) { maxSize = s; queArray = new Vertex[maxSize]; front = rear = 0; } public boolean insert(Vertex vertex) { if(isFull()) return false; else { queArray[rear] = vertex; rear=(rear+1)%maxSize; return true; } } public Vertex remove() { if(isEmpty()) return null; else { Vertex vertex = queArray[front]; front = (front+1)%maxSize; return vertex; } } public Vertex peekFront() { if(!isEmpty()) return queArray[front]; else return null; } public boolean isEmpty() { return (front==rear); } public boolean isFull() { return (front==(rear+1)%maxSize); } } class Vertex{ public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab) { this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge{ public int dest; public Edge nextEdge; public Edge(int dest) { this.dest= dest; nextEdge = null; } } class UDGraph{ private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private Queue theQueue; private ArrayList<Vertex> bfsList; public UDGraph() { vertexList = new Vertex[MAX_VERTS]; theQueue = new Queue(MAX_VERTS); bfsList = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex) { //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end) { Edge startEdge = new Edge(start); Edge endEdge = new Edge(end); Edge edge2 = vertexList[start].firstEdge; if(edge2==null) { vertexList[start].firstEdge = endEdge; }else { while(edge2.nextEdge!=null) edge2 = edge2.nextEdge; edge2.nextEdge = endEdge; } Edge edge3 = vertexList[end].firstEdge; if(edge3==null) { vertexList[end].firstEdge = startEdge; }else { while(edge3.nextEdge!=null) edge3 = edge3.nextEdge; edge3.nextEdge = startEdge; } } public void displayVertex(int v) { System.out.println(vertexList[v].label); } //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex) { Edge currentEdge = vertex.firstEdge; while(currentEdge != null ) { if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void bfs() { vertexList[0].wasVisited = true; bfsList.add(vertexList[0]); theQueue.insert(vertexList[0]); Vertex vertex2; while(!theQueue.isEmpty()) { Vertex vertex1 = theQueue.remove(); while((vertex2 = getAdjUnvisitedVertex(vertex1)) != null) { vertex2.wasVisited = true; bfsList.add(vertex2); theQueue.insert(vertex2); } } //遍历完成,清楚所有访问标志位 for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public void displayBFS() { for(int i=0;i<bfsList.size();i++) System.out.print(bfsList.get(i).label); System.out.println(""); } } public class ListUDG_BFS { public static void main(String[] args) { UDGraph theGraph = new UDGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1);//AB theGraph.addEdge(0, 3);//AD theGraph.addEdge(1, 4);//BE theGraph.addEdge(2, 5);//CF theGraph.addEdge(3, 4);//DE theGraph.addEdge(1, 6);//BG theGraph.addEdge(3, 5);//DF System.out.println("bfs"); theGraph.bfs(); theGraph.displayBFS(); } }
2.2 有向图的广度优先搜索
下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。
第1步:访问A。
第2步:访问B。
第3步:依次访问C,E,F。
在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。
第4步:依次访问D,G。
在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。
因此访问顺序是:A -> B -> C -> E -> F -> D -> G
class Queue { private final int maxSize; private int[] queArray; private int front; private int rear; public Queue(int s) { maxSize = s; queArray = new int[maxSize]; front = rear = 0; } public boolean insert(int j) { if(isFull()) return false; else { queArray[rear] = j; rear=(rear+1)%maxSize; return true; } } public int remove() { if(isEmpty()) return -1; else { int value = queArray[front]; front = (front+1)%maxSize; return value; } } public int peekFront() { if(!isEmpty()) return queArray[front]; else return -1; } public boolean isEmpty() { return (front==rear); } public boolean isFull() { return (front==(rear+1)%maxSize); } } class Vertex{ public char label; public boolean wasVisited; public Vertex(char lab) { label = lab; wasVisited = false; } } class DGraph{ private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private Queue theQueue; public DGraph() { vertexList = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theQueue = new Queue(MAX_VERTS); } public void addVertex(char lab) { vertexList[nVerts++] = new Vertex(lab); } public void addEdge(int start,int end) { adjMat[start][end] = 1; } public void displayVertex(int v) { System.out.println(vertexList[v].label); } public void bfs() { vertexList[0].wasVisited = true; displayVertex(0); theQueue.insert(0); int v2; while(!theQueue.isEmpty()) { int v1 = theQueue.remove(); while((v2 = getAdjUnvisitedVertex(v1)) != -1) { vertexList[v2].wasVisited = true; displayVertex(v2); theQueue.insert(v2); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v) { for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixDG_BFS { public static void main(String[] args) { DGraph theGraph = new DGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(4, 2); theGraph.bfs(); System.out.println(); } }
邻接链表:
import java.util.ArrayList; class Queue { private final int maxSize; private Vertex[] queArray; private int front; private int rear; public Queue(int s) { maxSize = s; queArray = new Vertex[maxSize]; front = rear = 0; } public boolean insert(Vertex vertex) { if(isFull()) return false; else { queArray[rear] = vertex; rear=(rear+1)%maxSize; return true; } } public Vertex remove() { if(isEmpty()) return null; else { Vertex vertex = queArray[front]; front = (front+1)%maxSize; return vertex; } } public Vertex peekFront() { if(!isEmpty()) return queArray[front]; else return null; } public boolean isEmpty() { return (front==rear); } public boolean isFull() { return (front==(rear+1)%maxSize); } } class Vertex{ public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab) { this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge{ public int dest; public Edge nextEdge; public Edge(int dest) { this.dest= dest; nextEdge = null; } } class DGraph{ private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private Queue theQueue; private ArrayList<Vertex> bfsList; public DGraph() { vertexList = new Vertex[MAX_VERTS]; theQueue = new Queue(MAX_VERTS); bfsList = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex) { //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end) { Edge endEdge = new Edge(end); Edge currentEdge = vertexList[start].firstEdge; if(currentEdge==null) { vertexList[start].firstEdge = endEdge; }else { while(currentEdge.nextEdge!=null) currentEdge = currentEdge.nextEdge; currentEdge.nextEdge = endEdge; } } public void displayVertex(int v) { System.out.println(vertexList[v].label); } //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex) { Edge currentEdge = vertex.firstEdge; while(currentEdge != null ) { if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void bfs() { vertexList[0].wasVisited = true; bfsList.add(vertexList[0]); theQueue.insert(vertexList[0]); Vertex vertex2; while(!theQueue.isEmpty()) { Vertex vertex1 = theQueue.remove(); while((vertex2 = getAdjUnvisitedVertex(vertex1)) != null) { vertex2.wasVisited = true; bfsList.add(vertex2); theQueue.insert(vertex2); } } //遍历完成,清楚所有访问标志位 for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public void displayBFS() { for(int i=0;i<bfsList.size();i++) System.out.print(bfsList.get(i).label); System.out.println(""); } } public class ListDG_BFS { public static void main(String[] args) { DGraph theGraph = new DGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1);//AB theGraph.addEdge(0, 2);//AC theGraph.addEdge(0, 3);//AD theGraph.addEdge(1, 4);//BE theGraph.addEdge(2, 5);//CF theGraph.addEdge(3, 4);//DE theGraph.addEdge(1, 6);//BG theGraph.addEdge(3, 5);//DF System.out.println("bfs"); theGraph.bfs(); theGraph.displayBFS(); } }
来源:https://www.cnblogs.com/xxlong/p/5021377.html