[专题八] 贪心算法

被刻印的时光 ゝ 提交于 2020-02-01 12:43:26

贪心算法

区间选点
/* 给定N个闭区间[ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。输出选择的点的最小数量。位于区间端点上的点也算作区间内。*/
const int N = 100010;
int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return r < W.r;
    }
}range[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);
    sort(range, range + n);
    int res = 0, ed = -2e9;
    for (int i = 0; i < n; i ++ )
        if (range[i].l > ed)
        {
            res ++ ;
            ed = range[i].r;
        }
    printf("%d\n", res);
    return 0;
}
最大不相交区间
/* 给定N个闭区间[ai,bi],请你在数轴上选择若干区间,使得选中的区间之间互不相交(包括端点)。输出可选取区间的最大数量。 */
const int N = 100010;
int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return r < W.r;
    }
}range[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d%d", &range[i].l, &range[i].r);
    sort(range, range + n);
    int res = 0, ed = -2e9;
    for (int i = 0; i < n; i ++ )
        if (ed < range[i].l)
        {
            res ++ ;
            ed = range[i].r;
        }
    printf("%d\n", res);
    return 0;
}
区间分组
/* 给定N个闭区间[ai,bi],请你将这些区间分成若干组,使得每组内部的区间两两之间(包括端点)没有交集,并使得组数尽可能小。*/
const int N = 100010;
int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const
    {
        return l < W.l;
    }
}range[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        range[i] = {l, r};
    }
    sort(range, range + n);
    priority_queue<int, vector<int>, greater<int>> heap;
    for (int i = 0; i < n; i ++ )
    {
        auto r = range[i];
        if (heap.empty() || heap.top() >= r.l) heap.push(r.r);
        else
        {
            heap.pop();
            heap.push(r.r);
        }
    }
    printf("%d\n", heap.size());
    return 0;
}
区间覆盖
/*给定N个闭区间[ai,bi]以及一个线段区间[s,t],请你选择尽量少的区间,将指定线段区间完全覆盖。输出最少区间数,如果无法完全覆盖则输出-1。*/

const int N = 100010;
int n;
struct Range
{
    int l, r;
    bool operator< (const Range &W)const {
        return l < W.l;
    }
}range[N];

int main()
{
    int st, ed;
    scanf("%d%d", &st, &ed);
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
    {
        int l, r;
        scanf("%d%d", &l, &r);
        range[i] = {l, r};
    }

    sort(range, range + n);
    int res = 0;
    bool success = false;
    for (int i = 0; i < n; i ++ )
    {
        int j = i, r = -2e9;
        while (j < n && range[j].l <= st) {
            r = max(r, range[j].r);
            j ++ ;
        }
        if (r < st) {
            res = -1;
            break;
        }
        res ++ ;
        if (r >= ed) {
            success = true;
            break;
        }
        st = r;
        i = j - 1;
    }
    if (!success) res = -1;
    printf("%d\n", res);
    return 0;
}
排队打水
/*有 n 个人排队到 1 个水龙头处打水,第 i 个人装满水桶所需的时间是 ti,请问如何安排他们的打水顺序才能使所有人的等待时间之和最小?*/
typedef long long LL;
const int N = 100010;
int n;
int t[N];
int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &t[i]);

    sort(t, t + n);
    reverse(t, t + n);
    LL res = 0;
    for (int i = 0; i < n; i ++ ) res += t[i] * i;
    printf("%lld\n", res);
    return 0;
}
货仓选址
/*在一条数轴上有 N 家商店,它们的坐标分别为 A1…AN。A1…AN。现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。*/
const int N = 100010;
int n;
int q[N];
int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);
    sort(q, q + n);
    int res = 0;
    for (int i = 0; i < n; i ++ ) res += abs(q[i] - q[n / 2]);
    printf("%d\n", res);
    return 0;
}
耍杂技的牛
/*农民约翰的N头奶牛(编号为1..N)计划逃跑并加入马戏团,为此它们决定练习表演杂技。奶牛们不是非常有创意,只提出了一个杂技表演:叠罗汉,表演时,奶牛们站在彼此的身上,形成一个高高的垂直堆叠。
奶牛们正在试图找到自己在这个堆叠中应该所处的位置顺序。这N头奶牛中的每一头都有着自己的重量Wi以及自己的强壮程度Si。一头牛支撑不住的可能性取决于它头上所有牛的总重量(不包括它自己)减去它的身体强壮程度的值,现在称该数值为风险值,风险值越大,这只牛撑不住的可能性越高。您的任务是确定奶牛的排序,使得所有奶牛的风险值中的最大值尽可能的小。*/
typedef pair<int, int> PII;
const int N = 50010;
int n;
PII cow[N];
int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
    {
        int s, w;
        scanf("%d%d", &w, &s);
        cow[i] = {w + s, w};
    }
    sort(cow, cow + n);
    int res = -2e9, sum = 0;
    for (int i = 0; i < n; i ++ )
    {
        int s = cow[i].first - cow[i].second, w = cow[i].second;
        res = max(res, sum - s);
        sum += w;
    }
    printf("%d\n", res);
    return 0;
}

知识点和代码均学习于Acwing: https://www.acwing.com/activity/

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!