Overview
缓存是为达到系统快速响应的一项关键技术,Ceph 作为一个复杂的分布式存储系统,有多种、多级缓存存在。缓存按照位置分为:
- 客户端缓存
- 服务端缓存
- 网络中缓存
按照部署方式分为:
- 单体缓存
- 缓存集群
- 分布式缓存
而Rados 网关缓存,也即RGW Cache 按照位置:作为Ceph client 可以归为客户端缓存,作为上层应用的服务端可以归为服务端缓存。而按照部署方式则为分布式缓存,因为Ceph 集群通常会存在多个RGW 实例,分布式缓存会涉及到缓存同步等问题。
RGW Cache 将对象存储的相关元数据存储在内部缓存中,用于提升性能。
RGW Cache 执行路径
前面已经提到,目前Ceph 中涉及RGW Cache 的配置参数有三个:
- rgw_cache_enabled: RGW Cache 开关,默认为true,即开启。
- rgw_cache_expiry_interval: 缓存数据的过期时间,默认900秒。
- rgw_cache_lru_size: RGW 缓存entries的最大数量,当缓存满后会根据LRU算法做缓存entries替换,entries size默认为10000。读请求较多的场景,适当大的参数配置可以带来更好的性能。
查看RGW cache 命中率:
[root@umstor14 build]# bin/ceph daemon out/radosgw.8000.asok perf dump|grep cache "cache_hit": 336, "cache_miss": 135,
ceph.conf 中配置参数rgw_cache_enabled。
rgw_main.cc 中,获得RGWRados *store:
int main() { RGWRados *store = RGWStoreManager::get_storage(g_ceph_context, g_conf()->rgw_enable_gc_threads, g_conf()->rgw_enable_lc_threads, g_conf()->rgw_enable_bl_threads, g_conf()->rgw_enable_quota_threads, g_conf()->rgw_run_sync_thread, g_conf().get_val<bool>("rgw_dynamic_resharding"), g_conf()->rgw_cache_enabled); // 获取rgw_cache_enabled 的配置,决定是否开启缓存 }
调用路径如下:
RGWRados RGWStoreManager::RGWStoreManager::get_storage() ==>
RGWRados RGWStoreManager::init_storage_provider() ==>
int RGWRados::initialize(CephContext *_cct) ==>
int RGWRados::initialize()
/** * Initialize the RADOS instance and prepare to do other ops * Returns 0 on success, -ERR# on failure. */ int RGWRados::initialize() { int ret; inject_notify_timeout_probability = cct->_conf.get_val<double>("rgw_inject_notify_timeout_probability"); max_notify_retries = cct->_conf.get_val<uint64_t>("rgw_max_notify_retries"); ret = init_svc(false); // 初始化包含svc_sysobj, sysobj_cache, svc_notify等的RGW Services if (ret < 0) { ldout(cct, 0) << "ERROR: failed to init services (ret=" << cpp_strerror(-ret) << ")" << dendl; return ret; } host_id = svc.zone_utils->gen_host_id(); ret = init_rados(); //rados 相关上下文初始化 if (ret < 0) return ret; return init_complete(); // 初始化gc,lc,reshard 等线程 }
RGWRados *store的初始化中初始化RGW 服务:
int RGWRados::init_svc(bool raw) raw=false ==>
int RGWServices::init(CephContext cct, bool have_cache) ==>
int RGWServices::do_init(CephContext cct, bool have_cache, false) ==>
int RGWServices_Def::init(CephContext *cct, bool have_cache, false)
int RGWServices_Def::init(CephContext *cct, bool have_cache, bool raw) { finisher = std::make_unique<RGWSI_Finisher>(cct); notify = std::make_unique<RGWSI_Notify>(cct); rados = std::make_unique<RGWSI_RADOS>(cct); zone = std::make_unique<RGWSI_Zone>(cct); zone_utils = std::make_unique<RGWSI_ZoneUtils>(cct); quota = std::make_unique<RGWSI_Quota>(cct); sync_modules = std::make_unique<RGWSI_SyncModules>(cct); sysobj = std::make_unique<RGWSI_SysObj>(cct); sysobj_core = std::make_unique<RGWSI_SysObj_Core>(cct); if (have_cache) { sysobj_cache = std::make_unique<RGWSI_SysObj_Cache>(cct); } ... // 各类服务初始化 sysobj_core->core_init(rados.get(), zone.get()); if (have_cache) { sysobj_cache->init(rados.get(), zone.get(), notify.get()); sysobj->init(rados.get(), sysobj_cache.get()); } else { sysobj->init(rados.get(), sysobj_core.get()); } ... //启动notify 服务 if (!raw) { r = notify->start(); if (r < 0) { ldout(cct, 0) << "ERROR: failed to start notify service (" << cpp_strerror(-r) << dendl; return r; } } ... // 启动sysobj_core 服务 r = sysobj_core->start(); if (r < 0) { ldout(cct, 0) << "ERROR: failed to start sysobj_core service (" << cpp_strerror(-r) << dendl; return r; } // 根据参数配置选择是否启动sysobj_cache 服务 if (have_cache) { r = sysobj_cache->start(); if (r < 0) { ldout(cct, 0) << "ERROR: failed to start sysobj_cache service (" << cpp_strerror(-r) << dendl; return r; } } // 启动sysobj 服务 r = sysobj->start(); if (r < 0) { ldout(cct, 0) << "ERROR: failed to start sysobj service (" << cpp_strerror(-r) << dendl; return r; } /* cache or core services will be started by sysobj */ return 0; }
CacheProovider RGWSI_SysObj_Cache继承自RGWSI_SysObj_Core,而RGWSI_SysObj_Core 又是RGWServiceInstance的子类。
最终启动RGWSI_SysObj_Cache 服务。
int RGWServiceInstance::start() ==>
virtual int RGWServiceInstance::do_start() ==>
int RGWSI_SysObj_Cache::do_start()
子类RGWSI_SysObj_Cache::do_start()中
int RGWSI_SysObj_Cache::do_start() { int r = RGWSI_SysObj_Core::do_start(); // 目前并没做什么,return 0 if (r < 0) { return r; } // 启动notify 服务,为了后面的不同实例间的缓存分发 r = notify_svc->start(); if (r < 0) { return r; } assert(notify_svc->is_started()); cb.reset(new RGWSI_SysObj_Cache_CB(this)); // 初始化回调对象 // 注册包含回调函数的对象至notify_svc // 通过notify_svc 的watch/notify 机制调用到已注册的回调函数 int RGWSI_SysObj_Cache::watch_cb() notify_svc->register_watch_cb(cb.get()); return 0; }
watch_cb()的调用路径是:
int RGWSI_Notify::watch_cb() ==>
int RGWSI_SysObj_Cache_CB::watch_cb() ==>
int RGWSI_SysObj_Cache::watch_cb()
RGW Cache 组织架构
一般的Cache 系统会有以下四个重要的概念:
- CachingProvider:定义了创建、配置、获取、管理和控制一个或多个CacheManager。一个应用可以访问多个CachingProvider。
- CacheManager:定义了创建、配置、获取、管理和控制一个或多个唯一命名的Cache,这些Cache 存在于CacheManager的上下文中。一个CacheManager仅被一个CachingProvider拥有。
- Cache:是一个类似于Map 的数据结构并临时存储以key 为索引的值。一个Cache 仅被一个CacheManager 拥有。
- Entry:是一个存储在Cache 中的key-value 对。
CachingProvider <>-----> CacheManager <>-----> Cache <>-----> Entry
RGW Cache 主要在以下源文件中实现:
- rgw_cache.h
- rgw_cache.cc
- svc_sys_obj_cache.h
- svc_sys_obj_cache.cc
类图结构如下:
根据各部分起到的作用,其中
- ObjectCache 就是
CacheManager
的角色,管理一个Cache(Map)
(即std::unordered_map<string, ObjectCacheEntry> cache_map)。 - RGWSI_SysObj_Cache 相当于
CachingProvider
,管理一个CacheManager
(即ObjectCache cache)。 - ObjectCacheEntry 当然就是
Entry
的角色。
CachingProvider
RGWSI_SysObj_Cache:
class RGWSI_SysObj_Cache : public RGWSI_SysObj_Core { //...... RGWSI_Notify *notify_svc{nullptr}; ObjectCache cache; // std::shared_ptr<RGWSI_SysObj_Cache_CB> cb; };
关于Entry
ObjectCacheEntry
struct ObjectCacheEntry { ObjectCacheInfo info; //包含缓存对象data、metadata及xattr std::list<string>::iterator lru_iter; uint64_t lru_promotion_ts; uint64_t gen; //entry 的版本,初始为0,每次更新后加一 std::vector<pair<RGWChainedCache *, string> > chained_entries; // ObjectCacheEntry() : lru_promotion_ts(0), gen(0) {} };
每个Entry 中包含对应Object 的缓存数据及相关信息,LRU信息,版本信息,chained_entries 等。
struct ObjectCacheInfo { int status = 0; uint32_t flags = 0; //? uint64_t epoch = 0; //? bufferlist data; map<string, bufferlist> xattrs; map<string, bufferlist> rm_xattrs; // 待移除xattrs ObjectMetaInfo meta; obj_version version = {}; ceph::coarse_mono_time time_added; //加入缓存的时间, 重新加入缓存的对象需要更新该时间 ...... };
可以看到Cache 中包含了数据、元数据以及xattr等信息。
缓存管理
前面提到ObjectCache
充当了CacheManager
的角色,而RGWSI_SysObj_Cache
相当于CachingProvider
。
基于LRU 的淘汰算法
LRU 是一类常见的缓存淘汰算法,在Ehcache,Redis等很多系统中都有实现或改进实现。
LRU(Least recently used,最近最少使用)算法根据数据的历访问记录来进行数据淘汰,其核心思想是:如果数据最近被访问过,那么将来被访问到的概率也很高。
- 而最近很少被使用的数据,很大概率下一次不再用到。
- 当缓存容量的满时候,优先淘汰最近很少使用的数据。
LRU 操作总结:
- 新数据直接插入到列表头部
- 缓存数据被命中,将数据移动到列表头部
- 缓存已满的时候,移除列表尾部数据。
CachingProvider
RGWSI_SysObj_Cache 作为CachingProvider,它负责对CacheManager ObjectCache的管理。
新的系统对象服务(system objects service)通过sysobj_core 用于核心的操作,这样可以在system objects service 上扩展cache service,以实现object cache,其在PR 24014中引入。
RGWSI_SysObj_Core 是系统对象的基本抽象:属性和方法,RGWSI_SysObj_Cache 继承自RGWSI_SysObj_Core,实现cache service 的扩展。
class RGWSI_SysObj_Cache : public RGWSI_SysObj_Core { //...... RGWSI_Notify *notify_svc{nullptr}; ObjectCache cache; // std::shared_ptr<RGWSI_SysObj_Cache_CB> cb; protected: void init(RGWSI_RADOS *_rados_svc, RGWSI_Zone *_zone_svc, RGWSI_Notify *_notify_svc) { core_init(_rados_svc, _zone_svc); notify_svc = _notify_svc; } int do_start() override; int raw_stat(const rgw_raw_obj& obj, uint64_t *psize, real_time *pmtime, uint64_t *epoch, map<string, bufferlist> *attrs, bufferlist *first_chunk, RGWObjVersionTracker *objv_tracker) override; int read(); //读操作 int get_attr(); // 获取xattr int set_attrs(); // 设置xattr int remove(); //移除缓存 int write(); int write_data(); // int distribute_cache(); // 分发缓存,因为通常会有多个RGW 实例,需要将缓存在多个RGW 实例间同步,保证数据一致性。 int watch_cb(); // watch 回调函数 void set_enabled(bool status); // watch/notify 开关,用于分布式多RGW 实例的缓存同步 public: // chain cache bool chain_cache_entry(std::initializer_list<rgw_cache_entry_info *> cache_info_entries, RGWChainedCache::Entry *chained_entry); ...... };
移除缓存remove()
int RGWSI_SysObj_Cache::remove(RGWSysObjectCtxBase& obj_ctx, RGWObjVersionTracker *objv_tracker, const rgw_raw_obj& obj) { rgw_pool pool; string oid; normalize_pool_and_obj(obj.pool, obj.oid, pool, oid); string name = normal_name(pool, oid); // 根据前面构成的标准cache name,调用CacheManager的bool ObjectCache::remove(const string& name) 执行缓存删除 cache.remove(name); ObjectCacheInfo info; // 向分布式系统中的其他RGW 实例分发缓存操作 int r = distribute_cache(name, obj, info, REMOVE_OBJ); if (r < 0) { ldout(cct, 0) << "ERROR: " << __func__ << "(): failed to distribute cache: r=" << r << dendl; } // 删除sysobj_core 对象 return RGWSI_SysObj_Core::remove(obj_ctx, objv_tracker, obj); }
具体的缓存删除操作由CacheManager ObjectCache 执行
bool ObjectCache::remove(const string& name) { RWLock::WLocker l(lock); // 第一步:获取写锁 if (!enabled) { return false; } // 在cache map中找到指定缓存 auto iter = cache_map.find(name); if (iter == cache_map.end()) return false; ldout(cct, 10) << "removing " << name << " from cache" << dendl; ObjectCacheEntry& entry = iter->second; // 移除指定ObjectCacheEntry 关联的所有 chained_entries for (auto& kv : entry.chained_entries) { kv.first->invalidate(kv.second); } remove_lru(name, iter->second.lru_iter); // 更新lru cache_map.erase(iter); // cache map 中移除该对象缓存 return true; }
以缓存中最常见、最重要的操作read()为例分析:
int RGWSI_SysObj_Cache::read(RGWSysObjectCtxBase& obj_ctx, GetObjState& read_state, RGWObjVersionTracker *objv_tracker, const rgw_raw_obj& obj, bufferlist *obl, off_t ofs, off_t end, map<string, bufferlist> *attrs, bool raw_attrs, rgw_cache_entry_info *cache_info, boost::optional<obj_version> refresh_version) { rgw_pool pool; string oid; // 若指定非开始处的offset 读取,则直接读取sysobj_core 对象 if (ofs != 0) { return RGWSI_SysObj_Core::read(obj_ctx, read_state, objv_tracker, obj, obl, ofs, end, attrs, raw_attrs, cache_info, refresh_version); } normalize_pool_and_obj(obj.pool, obj.oid, pool, oid); string name = normal_name(pool, oid); ObjectCacheInfo info; uint32_t flags = (end != 0 ? CACHE_FLAG_DATA : 0); if (objv_tracker) flags |= CACHE_FLAG_OBJV; if (attrs) flags |= CACHE_FLAG_XATTRS; // 获取指定name 的cache if ((cache.get(name, info, flags, cache_info) == 0) && (!refresh_version || !info.version.compare(&(*refresh_version)))) { if (info.status < 0) return info.status; bufferlist& bl = info.data; bufferlist::iterator i = bl.begin(); obl->clear(); i.copy_all(*obl); if (objv_tracker) objv_tracker->read_version = info.version; if (attrs) { if (raw_attrs) { *attrs = info.xattrs; } else { rgw_filter_attrset(info.xattrs, RGW_ATTR_PREFIX, attrs); } } return obl->length(); } map<string, bufferlist> unfiltered_attrset; int r = RGWSI_SysObj_Core::read(obj_ctx, read_state, objv_tracker, obj, obl, ofs, end, (attrs ? &unfiltered_attrset : nullptr), true, /* cache unfiltered attrs */ cache_info, refresh_version); if (r < 0) { // 未读到该对象时,将该对象加入cache if (r == -ENOENT) { // only update ENOENT, we'd rather retry other errors info.status = r; cache.put(name, info, cache_info); } return r; } if (obl->length() == end + 1) { /* in this case, most likely object contains more data, we can't cache it */ flags &= ~CACHE_FLAG_DATA; } else { bufferptr p(r); bufferlist& bl = info.data; bl.clear(); bufferlist::iterator o = obl->begin(); o.copy_all(bl); } info.status = 0; info.flags = flags; if (objv_tracker) { info.version = objv_tracker->read_version; } if (attrs) { info.xattrs = std::move(unfiltered_attrset); if (raw_attrs) { *attrs = info.xattrs; } else { rgw_filter_attrset(info.xattrs, RGW_ATTR_PREFIX, attrs); } } cache.put(name, info, cache_info); return r; }
CacheManager
CacheManager ObjectCache 负责具体Cache Entries的管理:缓存获取,缓存移除,LRU 管理
class ObjectCache { std::unordered_map<string, ObjectCacheEntry> cache_map; std::list<string> lru; // LRU 列表 unsigned long lru_size; // LRU 表的大小 unsigned long lru_counter; // 当前LRU 数 unsigned long lru_window; // rgw_cache_lru_size 的一半大小 RWLock lock; CephContext *cct; vector<RGWChainedCache *> chained_cache; bool enabled; // watch/notify 的开关 ceph::timespan expiry; // 缓存过期时间大小 };
缓存获取
int ObjectCache::get(const string& name, ObjectCacheInfo& info, uint32_t mask, rgw_cache_entry_info *cache_info) { RWLock::RLocker l(lock); // 第一步,先获取读锁 if (!enabled) { return -ENOENT; } // 获取指定缓存 auto iter = cache_map.find(name); if (iter == cache_map.end()) { ldout(cct, 10) << "cache get: name=" << name << " : miss" << dendl; if (perfcounter) perfcounter->inc(l_rgw_cache_miss); return -ENOENT; } // 缓存是否已经过期 // 过期缓存需要从cache map中移除,从LRU 表中移除 if (expiry.count() && (ceph::coarse_mono_clock::now() - iter->second.info.time_added) > expiry) { ldout(cct, 10) << "cache get: name=" << name << " : expiry miss" << dendl; lock.unlock(); lock.get_write(); // 由读锁转为写锁 // check that wasn't already removed by other thread iter = cache_map.find(name); if (iter != cache_map.end()) { for (auto &kv : iter->second.chained_entries) kv.first->invalidate(kv.second); remove_lru(name, iter->second.lru_iter); cache_map.erase(iter); } if(perfcounter) perfcounter->inc(l_rgw_cache_miss); return -ENOENT; } ObjectCacheEntry *entry = &iter->second; // 当前entry 计数距离总计数lru_counter超过LRU 窗口大小,即当前entry 已经落在LRU 表后半段,这时才去更新entry LRU表 // [lru window](https://github.com/ceph/ceph/commit/a84cf15f64211c00bc6c95687ff4509d16b1f909) if (lru_counter - entry->lru_promotion_ts > lru_window) { ldout(cct, 20) << "cache get: touching lru, lru_counter=" << lru_counter << " promotion_ts=" << entry->lru_promotion_ts << dendl; lock.unlock(); lock.get_write(); /* promote lock to writer */ /* need to redo this because entry might have dropped off the cache */ iter = cache_map.find(name); if (iter == cache_map.end()) { ldout(cct, 10) << "lost race! cache get: name=" << name << " : miss" << dendl; if(perfcounter) perfcounter->inc(l_rgw_cache_miss); return -ENOENT; } entry = &iter->second; /* check again, we might have lost a race here */ if (lru_counter - entry->lru_promotion_ts > lru_window) { touch_lru(name, *entry, iter->second.lru_iter); // 更新缓存LRU } } ObjectCacheInfo& src = iter->second.info; if ((src.flags & mask) != mask) { ldout(cct, 10) << "cache get: name=" << name << " : type miss (requested=0x" << std::hex << mask << ", cached=0x" << src.flags << std::dec << ")" << dendl; if(perfcounter) perfcounter->inc(l_rgw_cache_miss); return -ENOENT; } ldout(cct, 10) << "cache get: name=" << name << " : hit (requested=0x" << std::hex << mask << ", cached=0x" << src.flags << std::dec << ")" << dendl; info = src; if (cache_info) { cache_info->cache_locator = name; cache_info->gen = entry->gen; } if(perfcounter) perfcounter->inc(l_rgw_cache_hit); return 0; }
缓存添加
void ObjectCache::put(const string& name, ObjectCacheInfo& info, rgw_cache_entry_info *cache_info) { RWLock::WLocker l(lock); if (!enabled) { return; } ldout(cct, 10) << "cache put: name=" << name << " info.flags=0x" << std::hex << info.flags << std::dec << dendl; auto [iter, inserted] = cache_map.emplace(name, ObjectCacheEntry{}); ObjectCacheEntry& entry = iter->second; entry.info.time_added = ceph::coarse_mono_clock::now(); if (inserted) { entry.lru_iter = lru.end(); } ObjectCacheInfo& target = entry.info; invalidate_lru(entry); entry.chained_entries.clear(); entry.gen++; touch_lru(name, entry, entry.lru_iter); target.status = info.status; if (info.status < 0) { target.flags = 0; target.xattrs.clear(); target.data.clear(); return; } if (cache_info) { cache_info->cache_locator = name; cache_info->gen = entry.gen; } target.flags |= info.flags; if (info.flags & CACHE_FLAG_META) target.meta = info.meta; else if (!(info.flags & CACHE_FLAG_MODIFY_XATTRS)) target.flags &= ~CACHE_FLAG_META; // non-meta change should reset meta if (info.flags & CACHE_FLAG_XATTRS) { target.xattrs = info.xattrs; map<string, bufferlist>::iterator iter; for (iter = target.xattrs.begin(); iter != target.xattrs.end(); ++iter) { ldout(cct, 10) << "updating xattr: name=" << iter->first << " bl.length()=" << iter->second.length() << dendl; } } else if (info.flags & CACHE_FLAG_MODIFY_XATTRS) { map<string, bufferlist>::iterator iter; for (iter = info.rm_xattrs.begin(); iter != info.rm_xattrs.end(); ++iter) { ldout(cct, 10) << "removing xattr: name=" << iter->first << dendl; target.xattrs.erase(iter->first); } for (iter = info.xattrs.begin(); iter != info.xattrs.end(); ++iter) { ldout(cct, 10) << "appending xattr: name=" << iter->first << " bl.length()=" << iter->second.length() << dendl; target.xattrs[iter->first] = iter->second; } } if (info.flags & CACHE_FLAG_DATA) target.data = info.data; if (info.flags & CACHE_FLAG_OBJV) target.version = info.version; }
缓存移除
bool ObjectCache::remove(const string& name) { RWLock::WLocker l(lock); // 第一步,获取写锁 if (!enabled) { return false; } auto iter = cache_map.find(name); if (iter == cache_map.end()) return false; ldout(cct, 10) << "removing " << name << " from cache" << dendl; ObjectCacheEntry& entry = iter->second; // 移除跟cache entry 关联的所有chained entries for (auto& kv : entry.chained_entries) { kv.first->invalidate(kv.second); } // 移除LRU 表中的cache object对应项 remove_lru(name, iter->second.lru_iter); cache_map.erase(iter); return true; }
LRU 更新
LRU 表是一个双向列表 std:list<>,可支持表头插入、表尾插入。RGW Cache 实现在LRU 表头
std::list<string> lru;
LRU 移除
void ObjectCache::remove_lru(const string& name, std::list<string>::iterator& lru_iter) { if (lru_iter == lru.end())//确定是否在LRU 表中 return; lru.erase(lru_iter);// 移除该项 lru_size--; // LRU 当前size 减一 lru_iter = lru.end(); //将当前iter 置为无效 }
touch_lru 负责更新缓存项至LRU 表:
void ObjectCache::touch_lru(const string& name, ObjectCacheEntry& entry, std::list<string>::iterator& lru_iter) { // 当前lru size 超过预设值rgw_cache_lru_size,需要先删除LRU 头 while (lru_size > (size_t)cct->_conf->rgw_cache_lru_size) { auto iter = lru.begin(); // LRU 表尾项 if ((*iter).compare(name) == 0) { // 如果当前对象是LRU 是LRU 表尾项,不用立马显式删除,LRU 会根据rgw_cache_lru_size 自动不包含该项 /* * if the entry we're touching happens to be at the lru end, don't remove it, * lru shrinking can wait for next time */ break; } // 移除LRU 表尾项对应的对象缓存 auto map_iter = cache_map.find(*iter); ldout(cct, 10) << "removing entry: name=" << *iter << " from cache LRU" << dendl; if (map_iter != cache_map.end()) { ObjectCacheEntry& entry = map_iter->second; invalidate_lru(entry); cache_map.erase(map_iter); } // 删除LRU 表尾项,并将当前LRU size 减一 lru.pop_front(); lru_size--; } if (lru_iter == lru.end()) { // lru_iter不在LRU 表中:插入当前项至LRU 表头(list 尾) lru.push_back(name); lru_size++; lru_iter--; ldout(cct, 10) << "adding " << name << " to cache LRU end" << dendl; } else { // lru_iter在LRU 表中:移动至当前项至LRU 表头(list 尾) ldout(cct, 10) << "moving " << name << " to cache LRU end" << dendl; lru.erase(lru_iter); lru.push_back(name); lru_iter = lru.end(); --lru_iter; } lru_counter++; entry.lru_promotion_ts = lru_counter; // }
缓存一致性
RGW Cache 属于分布式缓存,通常会有多个RGW 实例,缓存需要在各个RGW 实例间分发,且需要保证缓存一致性。
RGW Cache的调用路径中已经给出,CachingProvider RGWSI_SysObj_Cache 会在服务启动do_start() 中start notify_svc,并注册watch_cb 函数。
notify_svc 这个服务的作用就是提供一种watch/notify 机制,以确保缓存一致性。
watch/notify 机制由librados提供。其中,notify rados object 存在default.rgw.control 池中。
[root@umstor14 build]# bin/rados ls -p default.rgw.control notify.1 notify.6 notify.3 notify.7 notify.2 notify.4 notify.5 notify.0 [root@umstor14 build]# bin/rados -p default.rgw.control stat notify.1 default.rgw.control/notify.1 mtime 2020-01-10 18:59:13.000000, size 0 [root@umstor14 build]# bin/rados -p default.rgw.control stat notify.7 default.rgw.control/notify.7 mtime 2020-01-10 18:59:14.000000, size 0
notify_svc 服务的启动路径跟cache_svc 类似:
int RGWServiceInstance::start() ==>
virtual int RGWServiceInstance::do_start() ==>
int RGWSI_Notify::do_start()
do_start() 会初始化watch:
int RGWSI_Notify::init_watch() { num_watchers = cct->_conf->rgw_num_control_oids; // 有参数rgw_num_control_oids 配置,默认8个 watcher bool compat_oid = (num_watchers == 0); if (num_watchers <= 0) num_watchers = 1; watchers = new RGWWatcher *[num_watchers]; ...... }
在cache op 之后,会执行cache 分发操作distribute_cache():
int RGWSI_SysObj_Cache::distribute_cache(const string& normal_name, const rgw_raw_obj& obj, ObjectCacheInfo& obj_info, int op) { RGWCacheNotifyInfo info; info.op = op; info.obj_info = obj_info; info.obj = obj; bufferlist bl; encode(info, bl); return notify_svc->distribute(normal_name, bl); // 利用notify_svc 分发 }
分发过程:
int RGWSI_Notify::distribute(const string& key, bufferlist& bl) { // 选择一个notify obj RGWSI_RADOS::Obj notify_obj = pick_control_obj(key); ldout(cct, 10) << "distributing notification oid=" << notify_obj.get_ref().obj << " bl.length()=" << bl.length() << dendl; // 执行分发 return robust_notify(notify_obj, bl); }
分发细节会在RGW Services -- Notify Service 中说明。
另外,在notify_svc 服务的watcher 的handle_notify()中调用已注册的回调函数。
watcher 收到notify的更新通知后,会更新本地缓存。
void RGWWatcher::handle_notify() { ...... // 调用cache_svc 服务注册的回调函数 svc->watch_cb(notify_id, cookie, notifier_id, bl); // 向通知者发送确认消息 bufferlist reply_bl; // empty reply payload obj.notify_ack(notify_id, cookie, reply_bl); ...... }
回调函数中根据操作类型,利用CacheManager 完成cache 更新或移除:
int RGWSI_SysObj_Cache::watch_cb(uint64_t notify_id, uint64_t cookie, uint64_t notifier_id, bufferlist& bl) { RGWCacheNotifyInfo info; //cache notify 信息,包含:操作、rgw raw object、obj cache info、offset等 try { auto iter = bl.cbegin(); decode(info, iter); } catch (buffer::end_of_buffer& err) { ldout(cct, 0) << "ERROR: got bad notification" << dendl; return -EIO; } catch (buffer::error& err) { ldout(cct, 0) << "ERROR: buffer::error" << dendl; return -EIO; } rgw_pool pool; string oid; normalize_pool_and_obj(info.obj.pool, info.obj.oid, pool, oid); string name = normal_name(pool, oid); switch (info.op) { case UPDATE_OBJ: //利用CacheManager 更新缓存 cache.put(name, info.obj_info, NULL); break; case REMOVE_OBJ: //利用CacheManager 移除缓存 cache.remove(name); break; default: ldout(cct, 0) << "WARNING: got unknown notification op: " << info.op << dendl; return -EINVAL; } return 0; }
Chained cache
Chained cache 让user info,bucket info 可以通过链接原生缓存,得以开启缓存。
Basically chains bucket info and user info caches to the raw metadata object cache.
binfo_cache = new RGWChainedCacheImpl<bucket_info_entry>; static RGWChainedCacheImpl<user_info_entry> uinfo_cache;
以user cache 为例,在开启RGW Cache后,优先从缓存中获取:
void rgw_user_init(RGWRados *store) { uinfo_cache.init(store->svc.cache); user_meta_handler = new RGWUserMetadataHandler; store->meta_mgr->register_handler(user_meta_handler); } int rgw_get_user_info_from_index(RGWRados * const store, const string& key, const rgw_pool& pool, RGWUserInfo& info, RGWObjVersionTracker * const objv_tracker, real_time * const pmtime) { // 首选尝试获取缓存 if (auto e = uinfo_cache.find(key)) { info = e->info; if (objv_tracker) *objv_tracker = e->objv_tracker; if (pmtime) *pmtime = e->mtime; return 0; } ...... // 未能从缓存中获取,直接从RADOS 集群中获取 // 获取到之后,更新uinfo 缓存 uinfo_cache.put(store->svc.cache, key, &e, { &cache_info }); .......
class RGWChainedCache { public: ...... struct Entry { RGWChainedCache *cache; // 关联cache const string& key; // email/swift_name/access_key/bucket name void *data; // 指向bucket_info_entry或user_info_entry Entry(RGWChainedCache *_c, const string& _k, void *_d) : cache(_c), key(_k), data(_d) {} }; };
通过sysobj_cache_svc 服务提供chain cache:
将chain_entry添加到chained cache,并和cache_info_entries 指向的ObjectCacheEntry相关联。
bool RGWChainedCache::put(RGWSI_SysObj_Cache *svc, const string& key, T *entry, std::initializer_list<rgw_cache_entry_info *> cache_info_entries) { if (!svc) { return false; } Entry chain_entry(this, key, entry); /* we need the svc cache to call us under its lock to maintain lock ordering */ return svc->chain_cache_entry(cache_info_entries, &chain_entry); } bool ObjectCache::chain_cache_entry(std::initializer_list<rgw_cache_entry_info*> cache_info_entries, RGWChainedCache::Entry *chained_entry) { // 确认所有有效ObjectCacheEntry ...... // 将待添加entry添加到对应chain cache中 chained_entry->cache->chain_cb(chained_entry->key, chained_entry->data); // 将chained entry关联到指定的所有有效的ObjectCacheEntry for (auto entry : entries) { entry->chained_entries.push_back(make_pair(chained_entry->cache, chained_entry->key)); } ...... }
chained cache 依赖于ObjectCache,
更新ObjectCache的成员 vector<RGWChainedCache *> chained_cache:
void ObjectCache::chain_cache(RGWChainedCache *cache); void ObjectCache::unchain_cache(RGWChainedCache *cache);
RGW Cache 优化方向
前面的测试系统的cache 命中率:"cache_hit": 336,"cache_miss": 135, 336/(336+135)*100% = 71%
缓存系统适合读多写少的场景。如何在这种场景下,提高RGW Cache 的命中率,以下方向可以考虑:
- 将缓存粒度设计的更细?
- 增大缓存容量(这个已经可以根据实际配置)
References
- 《深入分布式缓存》于君泽、曹洪伟、邱硕 机械工业出版社
- https://docs.ceph.com/docs/master/radosgw/config-ref/
- https://my.oschina.net/linuxhunter/blog/662801
- rgw: initial RGWRados refactoring work #24014
- rgw: update ObjectCacheInfo::time_added on overwrite
- rgw: add support for new watch/notify functionality
- rgw: an infrastructure for hooking into the raw cache
来源:https://www.cnblogs.com/dengchj/p/12245852.html