【Paper Reading】Bayesian Face Sketch Synthesis

核能气质少年 提交于 2020-01-31 03:25:14

Contribution: 1) Systematic interpretation to existing face sketch synthesis methods. 2) Bayesian face sketch synthesis: apply the spatial neighboring constraint to both the neighbor selection model and the wieght computation model.

Problem:

s代表target patch, t代表test patch,$X_i = {x_k^i}_{k=1}^K和Y_i = {x_k^i}_{k=1}^K$分别为 test patch 的K个最近邻photo patches和sketch patches. target patch 由下面公式计算得到:

$$s_i  = Y_i \cdot w_i = \sum_{k=1}^K w_{ik}y_k.$$

给定test patch生成target patch,等价于最大后验概率$p(s|t) = p(s_1,...,s_N|t_1,...,t_N) = p(W,Y|t) = p(W|Y,t)p(Y|t)$

将上式分为两个部分: P(W|Y,t)和P(Y|t)分别称为weight computation model和neighbor selection model.

Present work:

Neighbor Selection Model: 1) 忽略空间相邻batch的限制,单独考虑每个 text patch 2) 考虑空间相邻的batch限制

Weigth Computation Model: 1) 忽略空间相邻batch的限制,单独考虑每个 text patch 2) 考虑空间相邻的batch限制

MRF is mainly for neighbor selection and MWF is mainly for weight computation.

Bayesian face sketch synthesis:

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!