PA=LU

雨燕双飞 提交于 2020-01-30 22:49:39

PA=LUPA=LU

对矩阵AALULU分解(考虑行交换)
A=[a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44] A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}
第一步,将矩阵AA的第一列元素a11,a21,a31,a41a_{11},a_{21},a_{31},a_{41}中绝对值最大值所在行与第11行交换,即构造行交换矩阵P1P_{1},用行交换矩阵P1P_{1}左乘矩阵AA完成上述第一次行交换。如果a41a_{41}的绝对值最大,则将第44行和第11行交换,对应的行交换矩阵就是将44阶单位矩阵的第11行和第44行交换后得到的矩阵
P=[0001010000101000] P = \left[ \begin{matrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{matrix} \right]
用矩阵PP左乘矩阵AA相当于交换矩阵AA的第11行和第44
PA=[0001010000101000][a11a12a13a14a21a22a23a24a31a32a33a34a41a42a43a44]=[a41a42a43a44a21a22a23a24a31a32a33a34a11a12a13a14] \begin{aligned} PA &= \left[ \begin{matrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{matrix} \right] \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}\\ &= \begin{bmatrix} a_{41} & a_{42} & a_{43} & a_{44} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix} \end{aligned}
一般的,将第一次行交换后的矩阵记为
P1A=[b11b12b13b14b21b22b23b24b31b32b33b34b41b42b43b44] P_{1}A = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix}
第二步,构造矩阵M1M_{1}
M1=[1000l21100l31010l41001] M_{1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ -l_{21} & 1 & 0 & 0 \\ -l_{31} & 0 & 1 & 0 \\ -l_{41} & 0 & 0 & 1 \end{matrix} \right]
其中li1=bi1b11,i=2,3,4.\displaystyle l_{i1} =\frac{b_{i1}}{b_{11}}, i = 2, 3, 4. 用矩阵M1M_{1}左乘(P1A)(P_{1}A)
M1P1A=[b11b12b13b140b22b23b240b32b33b340b42b43b44] M_{1}P_{1}A = \left[ \begin{matrix} b_{11} & b_{12} & b_{13} & b_{14} \\ 0 & b'_{22} & b'_{23} & b'_{24} \\ 0 & b'_{32} & b'_{33} & b'_{34} \\ 0 & b'_{42} & b'_{43} & b'_{44} \end{matrix} \right]
第三步,将矩阵(M1P1A)(M_{1}P_{1}A)的第二列主对角线以下的元素b22,b32,b42b'_{22},b'_{32},b'_{42}中绝对值最大值所在行与第22行交换,即构造行交换矩阵P2P_{2},用行交换矩阵P2P_{2}左乘矩阵(M1P1A)(M_{1}P_{1}A)完成第二次行交换。记第二次行交换后的矩阵为
P2M1P1A=[b11b12b13b140c22c23c240c32c33c340c42c43c44] P_{2}M_{1}P_{1}A = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ 0 & c_{22} & c_{23} & c_{24} \\ 0 & c_{32} & c_{33} & c_{34} \\ 0 & c_{42} & c_{43} & c_{44} \end{bmatrix}
第四步,构造矩阵M2M_{2}
M2=[100001000l32100l4201] M_{2} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -l_{32} & 1 & 0 \\ 0 & -l_{42} & 0 & 1 \end{matrix} \right]
其中li2=ci2c22,i=3,4.\displaystyle l_{i2} =\frac{c_{i2}}{c_{22}}, i = 3, 4. 用矩阵M2M_{2}左乘(P2M1P1A)(P_{2}M_{1}P_{1}A)
M2P2M1P1A=[b11b12b13b140c22c23c2400c33c3400c43c44] M_{2}P_{2}M_{1}P_{1}A = \left[ \begin{matrix} b_{11} & b_{12} & b_{13} & b_{14} \\ 0 & c_{22} & c_{23} & c_{24} \\ 0 & 0 & c'_{33} & c'_{34} \\ 0 & 0 & c'_{43} & c'_{44} \end{matrix} \right]
第五步,将矩阵(M2P2M1P1A)(M_{2}P_{2}M_{1}P_{1}A)的第三列主对角线以下的元素c33,c43c'_{33},c'_{43}中绝对值最大值所在行与第33行交换,即构造行交换矩阵P3P_{3},用行交换矩阵P3P_{3}左乘矩阵(M2P2M1P1A)(M_{2}P_{2}M_{1}P_{1}A)完成第三次行交换。记第三次行交换后的矩阵为
P3M2P2M1P1A=[b11b12b13b140c22c23c2400d33d3400d43d44] P_{3}M_{2}P_{2}M_{1}P_{1}A = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ 0 & c_{22} & c_{23} & c_{24} \\ 0 & 0 & d_{33} & d_{34} \\ 0 & 0 & d_{43} & d_{44} \end{bmatrix}
第六步,构造矩阵M3M_{3}
M3=[10000100001000l431] M_{3} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -l_{43} & 1 \end{matrix} \right]
其中l43=d43d33.\displaystyle l_{43} =\frac{d_{43}}{d_{33}}. 用矩阵M3M_{3}左乘矩阵(P3M2P2M1P1A)(P_{3}M_{2}P_{2}M_{1}P_{1}A)
U=M3P3M2P2M1P1A=[b11b12b13b140c22c23c2400d33d34000d44] \begin{aligned} U &= M_{3}P_{3}M_{2}P_{2}M_{1}P_{1}A \\ &= \left[ \begin{matrix} b_{11} & b_{12} & b_{13} & b_{14} \\ 0 & c_{22} & c_{23} & c_{24} \\ 0 & 0 & d_{33} & d_{34} \\ 0 & 0 & 0 & d'_{44} \end{matrix} \right] \end{aligned}
用矩阵(M3P3M2P2M1P1)(M_{3}P_{3}M_{2}P_{2}M_{1}P_{1})的逆矩阵(M3P3M2P2M1P1)1(M_{3}P_{3}M_{2}P_{2}M_{1}P_{1})^{-1}左乘上式
A=(M3P3M2P2M1P1)1U=P11M11P21M21P31M31U \begin{aligned} A &= (M_{3}P_{3}M_{2}P_{2}M_{1}P_{1})^{-1}U \\ &= P_{1}^{-1}M_{1}^{-1}P_{2}^{-1}M_{2}^{-1}P_{3}^{-1}M_{3}^{-1}U \end{aligned}
再用矩阵(P3P2P1)(P_{3}P_{2}P_{1})左乘上式
P3P2P1A=P3P2P1P11M11P21M21P31M31U=P3P2M11P21P31P3M21P31M31U=(P3P2M11P21P31)(P3M21P31)(M31)U=L1L2L3U \begin{aligned} & P_{3}P_{2}P_{1}A \\ =& P_{3}P_{2}P_{1}P_{1}^{-1}M_{1}^{-1}P_{2}^{-1}M_{2}^{-1}P_{3}^{-1}M_{3}^{-1}U \\ =&P_{3}P_{2}M_{1}^{-1}P_{2}^{-1}P_{3}^{-1}P_{3}M_{2}^{-1}P_{3}^{-1}M_{3}^{-1}U \\ =&(P_{3}P_{2}M_{1}^{-1}P_{2}^{-1}P_{3}^{-1})(P_{3}M_{2}^{-1}P_{3}^{-1})(M_{3}^{-1})U \\ =&L_{1}L_{2}L_{3}U \end{aligned}
其中
M11=[1000l21100l31010l41001] M_{1}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ l_{21} & 1 & 0 & 0 \\ l_{31} & 0 & 1 & 0 \\ l_{41} & 0 & 0 & 1 \end{matrix} \right]
M21=[100001000l32100l4201] M_{2}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & l_{32} & 1 & 0 \\ 0 & l_{42} & 0 & 1 \end{matrix} \right]
M31=[10000100001000l431] M_{3}^{-1} = \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & l_{43} & 1 \end{matrix} \right]
P11=P1P21=P2P31=P3 \begin{aligned} P_{1}^{-1} &=P_{1} \\ P_{2}^{-1} &=P_{2} \\ P_{3}^{-1} &=P_{3} \end{aligned}

L1=P3P2M11P21P31L2=P3M21P31L3=M31L=L1L2L3P=P3P2P1 \begin{aligned} L_{1} &=P_{3}P_{2}M_{1}^{-1}P_{2}^{-1}P_{3}^{-1} \\ L_{2}&=P_{3}M_{2}^{-1}P_{3}^{-1} \\ L_{3}&=M_{3}^{-1} \\ L &=L_{1}L_{2}L_{3} \\ P&=P_{3}P_{2}P_{1} \end{aligned}
最后我们得到
PA=LU \boxed{PA=LU}

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!