An easy way
使用torch.nn.Sequential()
来更快地构建神经网络:
import torch import torch.nn.functional as F # replace following class code with an easy sequential network class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer self.predict = torch.nn.Linear(n_hidden, n_output) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.predict(x) # linear output return x net1 = Net(1, 10, 1) # easy and fast way to build your network net2 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1) ) print(net1) # net1 architecture """ Net ( (hidden): Linear (1 -> 10) (predict): Linear (10 -> 1) ) """ print(net2) # net2 architecture """ Sequential ( (0): Linear (1 -> 10) (1): ReLU () (2): Linear (10 -> 1) ) """
Save and reload
两种保存网络模型的方法:
torch.save(net1, 'net.pkl') # save entire net torch.save(net1.state_dict(), 'net_params.pkl') # save only the parameters
读取模型:
net2 = torch.load('net.pkl') prediction = net2(x)
只读取模型参数:
# restore only the parameters in net1 to net3 net3 = torch.nn.Sequential( torch.nn.Linear(1, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1) ) # copy net1's parameters into net3 net3.load_state_dict(torch.load('net_params.pkl')) prediction = net3(x)
Train on batch
通过Data.DataLoader()
中的batch_size
参数来控制加载数据时的batch大小
import torch import torch.utils.data as Data torch.manual_seed(1) # reproducible BATCH_SIZE = 5 # BATCH_SIZE = 8 x = torch.linspace(1, 10, 10) # this is x data (torch tensor) y = torch.linspace(10, 1, 10) # this is y data (torch tensor) torch_dataset = Data.TensorDataset(x, y) loader = Data.DataLoader( dataset=torch_dataset, # torch TensorDataset format batch_size=BATCH_SIZE, # mini batch size shuffle=True, # random shuffle for training num_workers=2, # subprocesses for loading data ) def show_batch(): for epoch in range(3): # train entire dataset 3 times for step, (batch_x, batch_y) in enumerate(loader): # for each training step # train your data... print('Epoch: ', epoch, '| Step: ', step, '| batch x: ', batch_x.numpy(), '| batch y: ', batch_y.numpy()) if __name__ == '__main__': show_batch()
打印结果:
Epoch: 0 | Step: 0 | batch x: [ 5. 7. 10. 3. 4.] | batch y: [6. 4. 1. 8. 7.] Epoch: 0 | Step: 1 | batch x: [2. 1. 8. 9. 6.] | batch y: [ 9. 10. 3. 2. 5.] Epoch: 1 | Step: 0 | batch x: [ 4. 6. 7. 10. 8.] | batch y: [7. 5. 4. 1. 3.] Epoch: 1 | Step: 1 | batch x: [5. 3. 2. 1. 9.] | batch y: [ 6. 8. 9. 10. 2.] Epoch: 2 | Step: 0 | batch x: [ 4. 2. 5. 6. 10.] | batch y: [7. 9. 6. 5. 1.] Epoch: 2 | Step: 1 | batch x: [3. 9. 1. 8. 7.] | batch y: [ 8. 2. 10. 3. 4.]
Optimizers
比较不同的优化方法对网络的影响:
import torch import torch.utils.data as Data import torch.nn.functional as F import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible LR = 0.01 BATCH_SIZE = 32 EPOCH = 12 # fake dataset x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1) y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size())) # plot dataset plt.scatter(x.numpy(), y.numpy()) plt.show() # put dateset into torch dataset torch_dataset = Data.TensorDataset(x, y) loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,) # default network class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.hidden = torch.nn.Linear(1, 20) # hidden layer self.predict = torch.nn.Linear(20, 1) # output layer def forward(self, x): x = F.relu(self.hidden(x)) # activation function for hidden layer x = self.predict(x) # linear output return x if __name__ == '__main__': # different nets net_SGD = Net() net_Momentum = Net() net_RMSprop = Net() net_Adam = Net() nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] # different optimizers opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR) opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8) opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9) opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99)) optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam] loss_func = torch.nn.MSELoss() losses_his = [[], [], [], []] # record loss # training for epoch in range(EPOCH): print('Epoch: ', epoch) for step, (b_x, b_y) in enumerate(loader): # for each training step for net, opt, l_his in zip(nets, optimizers, losses_his): output = net(b_x) # get output for every net loss = loss_func(output, b_y) # compute loss for every net opt.zero_grad() # clear gradients for next train loss.backward() # backpropagation, compute gradients opt.step() # apply gradients l_his.append(loss.data.numpy()) # loss recoder labels = ['SGD', 'Momentum', 'RMSprop', 'Adam'] for i, l_his in enumerate(losses_his): plt.plot(l_his, label=labels[i]) plt.legend(loc='best') plt.xlabel('Steps') plt.ylabel('Loss') plt.ylim((0, 0.2)) plt.show()
CNN
# library # standard library import os # third-party library import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch BATCH_SIZE = 50 LR = 0.001 # learning rate DOWNLOAD_MNIST = False # Mnist digits dataset if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'): # not mnist dir or mnist is empyt dir DOWNLOAD_MNIST = True train_data = torchvision.datasets.MNIST( root='./mnist/', train=True, # this is training data transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0] download=DOWNLOAD_MNIST, ) # plot one example print(train_data.train_data.size()) # (60000, 28, 28) print(train_data.train_labels.size()) # (60000) plt.imshow(train_data.train_data[0].numpy(), cmap='gray') plt.title('%i' % train_data.train_labels[0]) plt.show() # Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28) train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # pick 2000 samples to speed up testing test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1) test_y = test_data.test_labels[:2000] class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( # input shape (1, 28, 28) nn.Conv2d( in_channels=1, # input height out_channels=16, # n_filters kernel_size=5, # filter size stride=1, # filter movement/step padding=2, # if want same width and length of this image after Conv2d, padding=(kernel_size-1)/2 if stride=1 ), # output shape (16, 28, 28) nn.ReLU(), # activation nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14) ) self.conv2 = nn.Sequential( # input shape (16, 14, 14) nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14) nn.ReLU(), # activation nn.MaxPool2d(2), # output shape (32, 7, 7) ) self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7) output = self.out(x) return output, x # return x for visualization cnn = CNN() print(cnn) # net architecture optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # following function (plot_with_labels) is for visualization, can be ignored if not interested from matplotlib import cm try: from sklearn.manifold import TSNE; HAS_SK = True except: HAS_SK = False; print('Please install sklearn for layer visualization') def plot_with_labels(lowDWeights, labels): plt.cla() X, Y = lowDWeights[:, 0], lowDWeights[:, 1] for x, y, s in zip(X, Y, labels): c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9) plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01) plt.ion() # training and testing for epoch in range(EPOCH): for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader output = cnn(b_x)[0] # cnn output loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients if step % 50 == 0: test_output, last_layer = cnn(test_x) pred_y = torch.max(test_output, 1)[1].data.numpy() accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0)) print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy) if HAS_SK: # Visualization of trained flatten layer (T-SNE) tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) plot_only = 500 low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :]) labels = test_y.numpy()[:plot_only] plot_with_labels(low_dim_embs, labels) plt.ioff() # print 10 predictions from test data test_output, _ = cnn(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy() print(pred_y, 'prediction number') print(test_y[:10].numpy(), 'real number')
参考:
来源:https://www.cnblogs.com/lokvahkoor/p/12243513.html