目录
2、mark / par_mark / mark_range / par_mark_range / mark_large_range / par_mark_large_range
3、isMarked / par_isMarked / isUnmarked /isAllClear
4、par_clear / clear_range / par_clear_range / clear_large_range / par_clear_large_range /clear_all
5、getNextMarkedWordAddress / getNextUnmarkedWordAddress / getAndClearMarkedRegion
6、iterate / dirty_range_iterate_clear
2、pop / push / par_pop / par_push
本篇博客讲解表示CMS老年代的ConcurrentMarkSweepGeneration的相关基础类的实现。
一、CardGeneration
CardGeneration表示一个使用卡表来标记对象修改,使用BlockOffsetArray来记录内存块的起始位置的generation,继承自Generation,定义也在generation.hpp中,新增了如下属性:
- GenRemSet* _rs; //与其他Generation实例共享的卡表实现实例
- BlockOffsetSharedArray* _bts; //当前Generation独享的BlockOffsetArray实现
- size_t _shrink_factor; //老年代内存缩容的百分比,第一次是0,第二次是10,第三次是40,第四次是100,中间有一次扩容了则被重置为0,重新开始累加,避免频繁的缩容与扩容。
- size_t _min_heap_delta_bytes; //老年代内存扩展或者缩容时的最低内存值
- size_t _capacity_at_prologue; //GC开始时的内存容量
- size_t _used_at_prologue; //GC开始时的内存使用量
重点关注以下方法的实现。
1、 构造函数
CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
int level,
GenRemSet* remset) :
Generation(rs, initial_byte_size, level), _rs(remset),
_shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
_used_at_prologue()
{
HeapWord* start = (HeapWord*)rs.base();
size_t reserved_byte_size = rs.size();
//start地址和reserved_byte_size必须是4的整数倍
assert((uintptr_t(start) & 3) == 0, "bad alignment");
assert((reserved_byte_size & 3) == 0, "bad alignment");
MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
//初始化bts
_bts = new BlockOffsetSharedArray(reserved_mr,
heap_word_size(initial_byte_size));
MemRegion committed_mr(start, heap_word_size(initial_byte_size));
//重置卡表对应的内存区域
_rs->resize_covered_region(committed_mr);
if (_bts == NULL)
vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
//校验start地址和end地址都对应某个卡表项的起始地址
guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
}
//MinHeapDeltaBytes的取值是128k,表示扩展时的最低内存
_min_heap_delta_bytes = MinHeapDeltaBytes;
_capacity_at_prologue = initial_byte_size;
_used_at_prologue = 0;
}
2、expand
expand用于将内存扩展,第一个参数表示期望扩展的内存空间,第二个参数表示期望扩展的最低内存空间,如果扩展了一部分内存空间,即使小于最低内存空间,则返回true,底层会调用grow_by完成扩展,如果扩展失败则尝试grow_to_reserved。其实现如下:
//第一个参数bytes表示期望扩展的内存大小,第二个表示期望扩展的最低内存大小
bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
assert_locked_or_safepoint(Heap_lock);
if (bytes == 0) {
return true; // That's what grow_by(0) would return
}
//做内存对齐
size_t aligned_bytes = ReservedSpace::page_align_size_up(bytes);
if (aligned_bytes == 0){
aligned_bytes = ReservedSpace::page_align_size_down(bytes);
}
size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
bool success = false;
if (aligned_expand_bytes > aligned_bytes) {
//扩展内存空间,正常来说aligned_bytes大于aligned_expand_bytes
success = grow_by(aligned_expand_bytes);
}
if (!success) {
success = grow_by(aligned_bytes);
}
if (!success) {
//依然扩展失败,则尝试扩展至最大内存
success = grow_to_reserved();
}
if (PrintGC && Verbose) {
if (success && GC_locker::is_active_and_needs_gc()) {
gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
}
}
return success;
}
调用链如下:
3、compute_new_size
该方法是在GC结束后根据参数MinHeapFreeRatio和MaxHeapFreeRatio以及当前内存的使用量来重新计算期望的容量,并做适当的扩容或者缩容处理,其实现如下:
void CardGeneration::compute_new_size() {
assert(_shrink_factor <= 100, "invalid shrink factor");
size_t current_shrink_factor = _shrink_factor;
//将_shrink_factor置为0,后面缩容时会重新赋值
_shrink_factor = 0;
//MinHeapFreeRatio表示老年代空闲内存占总内存的最低百分比,默认值是80
//计算最低的空闲百分比和最大的已使用百分比
const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
const double maximum_used_percentage = 1.0 - minimum_free_percentage;
//获取GC后的容量和已使用量
const size_t used_after_gc = used();
const size_t capacity_after_gc = capacity();
//计算期望的最低容量,必须大于初始值
const double min_tmp = used_after_gc / maximum_used_percentage;
size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
minimum_desired_capacity = MAX2(minimum_desired_capacity,
spec()->init_size());
assert(used_after_gc <= minimum_desired_capacity, "sanity check");
if (PrintGC && Verbose) {
const size_t free_after_gc = free();
const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
gclog_or_tty->print_cr(" "
" minimum_free_percentage: %6.2f"
" maximum_used_percentage: %6.2f",
minimum_free_percentage,
maximum_used_percentage);
gclog_or_tty->print_cr(" "
" free_after_gc : %6.1fK"
" used_after_gc : %6.1fK"
" capacity_after_gc : %6.1fK",
free_after_gc / (double) K,
used_after_gc / (double) K,
capacity_after_gc / (double) K);
gclog_or_tty->print_cr(" "
" free_percentage: %6.2f",
free_percentage);
}
if (capacity_after_gc < minimum_desired_capacity) {
//当前容量小于期望的容量,需要扩容
//计算期望扩容的量
size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
if (expand_bytes >= _min_heap_delta_bytes) {
//必须大于最低扩容量才执行扩容
expand(expand_bytes, 0); // safe if expansion fails
}
if (PrintGC && Verbose) {
gclog_or_tty->print_cr(" expanding:"
" minimum_desired_capacity: %6.1fK"
" expand_bytes: %6.1fK"
" _min_heap_delta_bytes: %6.1fK",
minimum_desired_capacity / (double) K,
expand_bytes / (double) K,
_min_heap_delta_bytes / (double) K);
}
return;
}
//当前容量大于期望的容量,需要缩容
size_t shrink_bytes = 0;
//计算缩容的容量
size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
//MaxHeapFreeRatio表示空闲堆内存的最大百分比,默认是70%,用来避免缩容,通常用于老年代,但是G1和ParallelGC下应用于整个堆
if (MaxHeapFreeRatio < 100) {
//根据MaxHeapFreeRatio和used_after_gc计算期望的最大内存容量
const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
const double minimum_used_percentage = 1.0 - maximum_free_percentage;
const double max_tmp = used_after_gc / minimum_used_percentage;
size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
maximum_desired_capacity = MAX2(maximum_desired_capacity,
spec()->init_size());
if (PrintGC && Verbose) {
gclog_or_tty->print_cr(" "
" maximum_free_percentage: %6.2f"
" minimum_used_percentage: %6.2f",
maximum_free_percentage,
minimum_used_percentage);
gclog_or_tty->print_cr(" "
" _capacity_at_prologue: %6.1fK"
" minimum_desired_capacity: %6.1fK"
" maximum_desired_capacity: %6.1fK",
_capacity_at_prologue / (double) K,
minimum_desired_capacity / (double) K,
maximum_desired_capacity / (double) K);
}
assert(minimum_desired_capacity <= maximum_desired_capacity,
"sanity check");
if (capacity_after_gc > maximum_desired_capacity) {
//计算需要缩容的内存容量
shrink_bytes = capacity_after_gc - maximum_desired_capacity;
//为了避免一次调用就缩容到初始大小,所以设置了_shrink_factor,第一次调用实际不缩容,第二次缩容10%,第三次40%,第四次100%,如果中间有一次扩容,则被重置为0
shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
if (current_shrink_factor == 0) {
_shrink_factor = 10;
} else {
_shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
}
if (PrintGC && Verbose) {
gclog_or_tty->print_cr(" "
" shrinking:"
" initSize: %.1fK"
" maximum_desired_capacity: %.1fK",
spec()->init_size() / (double) K,
maximum_desired_capacity / (double) K);
gclog_or_tty->print_cr(" "
" shrink_bytes: %.1fK"
" current_shrink_factor: %d"
" new shrink factor: %d"
" _min_heap_delta_bytes: %.1fK",
shrink_bytes / (double) K,
current_shrink_factor,
_shrink_factor,
_min_heap_delta_bytes / (double) K);
}
}
}
if (capacity_after_gc > _capacity_at_prologue) {
//执行GC后老年代的容量变大了,这可能是因为在promote的过程中扩展了,缩容时候需要考虑这一部分内存
size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
if (PrintGC && Verbose) {
gclog_or_tty->print_cr(" "
" aggressive shrinking:"
" _capacity_at_prologue: %.1fK"
" capacity_after_gc: %.1fK"
" expansion_for_promotion: %.1fK"
" shrink_bytes: %.1fK",
capacity_after_gc / (double) K,
_capacity_at_prologue / (double) K,
expansion_for_promotion / (double) K,
shrink_bytes / (double) K);
}
}
//需要缩容的内存大于最低要求,则执行缩容
if (shrink_bytes >= _min_heap_delta_bytes) {
shrink(shrink_bytes);
}
}
其调用链如下:
二、CMSBitMap
CMSBitMap的定义在hotspot\src\share\vm\gc_implementation\concurrentMarkSweep\concurrentMarkSweepGeneration.hpp中,表示一个通用的CMS下的BitMap,可以用于CMS的标记BitMap和mod union table,两种场景都是使用其中的一部分方法,这个类的实现是基于BitMap类的,两种场景下的shifter属性不同。其包含的属性如下:
- HeapWord* _bmStartWord; //所对应的内存区域的起始地址
- size_t _bmWordSize; //所对应的内存区域的大小,单位是字宽
- const int _shifter; // shifts to convert HeapWord to bit position
- VirtualSpace _virtual_space; // bitMap本身使用的一段连续地址空间
- BitMap _bm; // 依赖的BitMap 实例
- Mutex* const _lock; // 操作bm需要的锁
重点关注以下方法的实现。
1、构造方法 / allocate
构造方法主要是初始化lock和shifter属性,其他属性都是在allocate方法中完成初始化的,其实现如下:
CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
_bm(),
_shifter(shifter),
_lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
{
_bmStartWord = 0;
_bmWordSize = 0;
}
bool CMSBitMap::allocate(MemRegion mr) {
_bmStartWord = mr.start();
_bmWordSize = mr.word_size();
//为bitMap申请指定大小的一段连续地址段
ReservedSpace brs(ReservedSpace::allocation_align_size_up(
(_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
if (!brs.is_reserved()) {
//分配失败
warning("CMS bit map allocation failure");
return false;
}
//初始化_virtual_space
if (!_virtual_space.initialize(brs, brs.size())) {
warning("CMS bit map backing store failure");
return false;
}
assert(_virtual_space.committed_size() == brs.size(),
"didn't reserve backing store for all of CMS bit map?");
//设置bitMap的映射起始地址
_bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
_bmWordSize, "inconsistency in bit map sizing");
//设置大小
_bm.set_size(_bmWordSize >> _shifter);
// bm.clear(); // can we rely on getting zero'd memory? verify below
assert(isAllClear(),
"Expected zero'd memory from ReservedSpace constructor");
assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
"consistency check");
return true;
}
其调用链如下:
2、mark / par_mark / mark_range / par_mark_range / mark_large_range / par_mark_large_range
mark和par_mark是将某个地址在BitMap中对应的位打标,mark_range和par_mark_range是将某个小范围的地址区间在BitMap中对应的位打标,mark_large_range 和 par_mark_large_range将某个大范围的地址区间在BitMap中对应的位打标,通常起始地址大于32位,其实现如下:
inline void CMSBitMap::mark(HeapWord* addr) {
//校验已经获取了锁
assert_locked();
//校验addr在CMSBitMap对应的地址范围内
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
"outside underlying space?");
_bm.set_bit(heapWordToOffset(addr));
}
inline bool CMSBitMap::par_mark(HeapWord* addr) {
assert_locked();
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
"outside underlying space?");
return _bm.par_at_put(heapWordToOffset(addr), true);
}
inline size_t CMSBitMap::heapWordToOffset(HeapWord* addr) const {
return (pointer_delta(addr, _bmStartWord)) >> _shifter;
}
inline void BitMap::set_bit(idx_t bit) {
verify_index(bit);
*word_addr(bit) |= bit_mask(bit);
}
bool BitMap::par_at_put(idx_t bit, bool value) {
//par_set_bit与set_bit的区别在于使用cmpxchg_ptr改变指定地址的值,返回true表示修改成功,返回false表示其他线程完成了修改
//底层实现都是将bit映射至bitMap中对应的地址上,然后修改指定的位
return value ? par_set_bit(bit) : par_clear_bit(bit);
}
inline void CMSBitMap::mark_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
//通过heapWordToOffset算出来的起始地址通常只相差一位
_bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::small_range);
}
inline void CMSBitMap::par_mark_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
// Range size is usually just 1 bit.
_bm.par_set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::small_range);
}
inline void CMSBitMap::mark_large_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
//通过heapWordToOffset算出来的起始地址通常只相差至少32位
_bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::large_range);
}
inline void CMSBitMap::par_mark_large_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
// Range size must be greater than 32 bytes.
_bm.par_set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::large_range);
}
void CMSBitMap::region_invariant(MemRegion mr)
{
assert_locked();
// mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
assert(!mr.is_empty(), "unexpected empty region");
assert(covers(mr), "mr should be covered by bit map");
// convert address range into offset range
size_t start_ofs = heapWordToOffset(mr.start());
//校验mr的结束地址已经对齐了
assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
((intptr_t) 1 << (_shifter+LogHeapWordSize))),
"Misaligned mr.end()");
size_t end_ofs = heapWordToOffset(mr.end());
//校验结束地址大于起始地址
assert(end_ofs > start_ofs, "Should mark at least one bit");
}
//判断mr是否在指BitMap对应的内存区域中
bool CMSBitMap::covers(MemRegion mr) const {
// assert(_bm.map() == _virtual_space.low(), "map inconsistency");
assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
"size inconsistency");
return (mr.start() >= _bmStartWord) &&
(mr.end() <= endWord());
}
HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
inline void BitMap::set_range(idx_t beg, idx_t end, RangeSizeHint hint) {
if (hint == small_range && end - beg == 1) {
set_bit(beg);
} else {
if (hint == large_range) {
set_large_range(beg, end);
} else {
set_range(beg, end);
}
}
}
3、isMarked / par_isMarked / isUnmarked /isAllClear
isMarked 和par_isMarked 用于判断某个地址是否已经打标,isUnmarked与之相反,是否未打标,isAllClear用于判断是否所有的标志都被清除了,其实现如下:
inline bool CMSBitMap::isMarked(HeapWord* addr) const {
assert_locked();
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
"outside underlying space?");
return _bm.at(heapWordToOffset(addr));
}
inline bool CMSBitMap::par_isMarked(HeapWord* addr) const {
//与isMarked相比,不需要检查锁
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
"outside underlying space?");
return _bm.at(heapWordToOffset(addr));
}
inline bool CMSBitMap::isUnmarked(HeapWord* addr) const {
assert_locked();
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
"outside underlying space?");
return !_bm.at(heapWordToOffset(addr));
}
bool at(idx_t index) const {
verify_index(index);
//判断BitMap中对应的映射地址的对应位是否是1,如果是1,1!=0返回true,表示已经被标记了
return (*word_addr(index) & bit_mask(index)) != 0;
}
//返回在BitMap中对应的映射地址,64位下一个地址有8字节,64位,类似于HashMap中的一个槽位
bm_word_t* word_addr(idx_t bit) const { return map() + word_index(bit); }
//将偏移量进一步右移6位,LogBitsPerByte在64位下都是3,LogBitsPerWord是6
//右移6位丢失的精度通过bit_mask补回来
static idx_t word_index(idx_t bit) { return bit >> LogBitsPerWord; }
//返回的值实际是2的整数倍,就64位中只有1位是1,其他的都是0
static bm_word_t bit_mask(idx_t bit) { return (bm_word_t)1 << bit_in_word(bit); }
//BitsPerWord在64位下是64,这里实际是bit对64取余
static idx_t bit_in_word(idx_t bit) { return bit & (BitsPerWord - 1); }
inline size_t CMSBitMap::heapWordToOffset(HeapWord* addr) const {
//pointer_delta算出addr相对于起始地址的偏移量,单位是字节
return (pointer_delta(addr, _bmStartWord)) >> _shifter;
}
inline bool CMSBitMap::isAllClear() const {
assert_locked();
//获取下一个被标记的地址,如果该地址大于等于结束地址,则认为所有的打标都清空了
return getNextMarkedWordAddress(startWord()) >= endWord();
}
结合上面打标方法的分析可知,BitMap的实现是基于对象地址都是按照8字节,即一个字宽大小对齐的,所谓打标就是将某个对象地址映射成BitMap内存的某个地址上的某个位,某个地址类似于HashMap中的一个槽,然后将这个位上的值置为1。
4、par_clear / clear_range / par_clear_range / clear_large_range / par_clear_large_range /clear_all
par_clear用于清除某个地址在BitMap中对应的标志,clear_range和par_clear_range用于清除某个小范围的地址区间在BitMap中对应的位的标志,clear_large_range和par_clear_large_range用于清除某个大范围的地址区间在BitMap中对应的位的标志,clear_all用于清空BitMap中所有的标志,其实现如下:
inline void CMSBitMap::par_clear(HeapWord* addr) {
assert_locked();
assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
"outside underlying space?");
_bm.par_at_put(heapWordToOffset(addr), false);
}
inline void CMSBitMap::clear_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
// Range size is usually just 1 bit.
_bm.clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::small_range);
}
inline void CMSBitMap::par_clear_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
// Range size is usually just 1 bit.
_bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::small_range);
}
inline void CMSBitMap::clear_large_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
// Range size must be greater than 32 bytes.
_bm.clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::large_range);
}
inline void CMSBitMap::par_clear_large_range(MemRegion mr) {
NOT_PRODUCT(region_invariant(mr));
// Range size must be greater than 32 bytes.
_bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()),
BitMap::large_range);
}
inline void BitMap::clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
if (hint == small_range && end - beg == 1) {
clear_bit(beg);
} else {
if (hint == large_range) {
clear_large_range(beg, end);
} else {
clear_range(beg, end);
}
}
}
inline void CMSBitMap::clear_all() {
assert_locked();
// CMS bitmaps are usually cover large memory regions
_bm.clear_large();
return;
}
5、getNextMarkedWordAddress / getNextUnmarkedWordAddress / getAndClearMarkedRegion
三个方法都有两个重载版本,指定起止地址和只指定起始地址,结束地址默认BitMap的结束地址。getNextMarkedWordAddress返回指定地址范围的第一个位等于1的地址,getNextUnmarkedWordAddress返回指定地址范围的第一个位等于0的地址,getAndClearMarkedRegion用于清除指定地址范围内第一个被连续打标的区域的标志,其实现如下:
inline HeapWord* CMSBitMap::getNextMarkedWordAddress(HeapWord* addr) const {
return getNextMarkedWordAddress(addr, endWord());
}
inline HeapWord* CMSBitMap::getNextMarkedWordAddress(
HeapWord* start_addr, HeapWord* end_addr) const {
assert_locked();
//找到在指定地址范围内位下一个等于1的地址
size_t nextOffset = _bm.get_next_one_offset(
heapWordToOffset(start_addr),
heapWordToOffset(end_addr));
//将BitMap中的地址转换成实际地址
HeapWord* nextAddr = offsetToHeapWord(nextOffset);
assert(nextAddr >= start_addr &&
nextAddr <= end_addr, "get_next_one postcondition");
assert((nextAddr == end_addr) ||
isMarked(nextAddr), "get_next_one postcondition");
return nextAddr;
}
inline HeapWord* CMSBitMap::offsetToHeapWord(size_t offset) const {
return _bmStartWord + (offset << _shifter);
}
inline HeapWord* CMSBitMap::getNextUnmarkedWordAddress(HeapWord* addr) const {
return getNextUnmarkedWordAddress(addr, endWord());
}
inline HeapWord* CMSBitMap::getNextUnmarkedWordAddress(
HeapWord* start_addr, HeapWord* end_addr) const {
assert_locked();
//找到在指定地址范围内位下一个等于0的地址
size_t nextOffset = _bm.get_next_zero_offset(
heapWordToOffset(start_addr),
heapWordToOffset(end_addr));
//将BitMap中的地址转换成实际地址
HeapWord* nextAddr = offsetToHeapWord(nextOffset);
assert(nextAddr >= start_addr &&
nextAddr <= end_addr, "get_next_zero postcondition");
assert((nextAddr == end_addr) ||
isUnmarked(nextAddr), "get_next_zero postcondition");
return nextAddr;
}
inline MemRegion CMSBitMap::getAndClearMarkedRegion(HeapWord* addr) {
return getAndClearMarkedRegion(addr, endWord());
}
inline MemRegion CMSBitMap::getAndClearMarkedRegion(HeapWord* start_addr,
HeapWord* end_addr) {
HeapWord *start, *end;
assert_locked();
//找到start_addr后第一个打标的地址
start = getNextMarkedWordAddress (start_addr, end_addr);
//找到start之后的第一个没有打标的地址,start和end之间的区域就是一段连续打标的区域
end = getNextUnmarkedWordAddress(start, end_addr);
assert(start <= end, "Consistency check");
MemRegion mr(start, end);
if (!mr.is_empty()) {
//将start和end之间的标志去掉
clear_range(mr);
}
return mr;
}
6、iterate / dirty_range_iterate_clear
这两个方法都有两个重载版本,一个指定起止地址范围里,一个在整个BitMap对应的地址范围内,都是用来遍历指定地址范围内打标的位,会将这些位转换成真实地址,然后再对真实地址做必要的处理,其实现如下:
inline void CMSBitMap::iterate(BitMapClosure* cl, HeapWord* left,
HeapWord* right) {
assert_locked();
left = MAX2(_bmStartWord, left);
right = MIN2(_bmStartWord + _bmWordSize, right);
if (right > left) {
//遍历逻辑封装在bm里面,BitMapClosure会自动将BitMap的映射地址转换成真实地址
_bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right));
}
}
void iterate(BitMapClosure* cl) {
_bm.iterate(cl);
}
void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
HeapWord *next_addr, *end_addr, *last_addr;
assert_locked();
assert(covers(mr), "out-of-range error");
for (next_addr = mr.start(), end_addr = mr.end();
next_addr < end_addr; next_addr = last_addr) {
//找到BitMap中下一个连续的被打标的区域
MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
last_addr = dirty_region.end();
if (!dirty_region.is_empty()) {
//执行遍历
cl->do_MemRegion(dirty_region);
} else {
assert(last_addr == end_addr, "program logic");
return;
}
}
}
三、CMSMarkStack
CMSMarkStack是一个基于可扩容数组实现的保存oop的栈,其定义同样在concurrentMarkSweepGeneration.hpp中,包含的属性如下:
- VirtualSpace _virtual_space; // 对应的内存区域
- oop* _base; // oop数组的基地址
- size_t _index; //Stack中元素的个数
- size_t _capacity; // 允许的最大容量
- Mutex _par_lock; // 并发操作base的锁
- size_t _hit_limit; // 记录MarkStack的容量达到最大值的次数
- size_t _failed_double; // 记录MarkStack扩容失败的次数
重点关注以下方法的实现。
1、构造方法和allocate
这两个都是用来初始化CMSMarkStack的,其实现如下:
CMSMarkStack():
_par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
_hit_limit(0),
_failed_double(0) {}
bool CMSMarkStack::allocate(size_t size) {
//按照size个oop大小申请内存,oop实际是oopDesc*的别名
ReservedSpace rs(ReservedSpace::allocation_align_size_up(
size * sizeof(oop)));
if (!rs.is_reserved()) {
//申请内存失败
warning("CMSMarkStack allocation failure");
return false;
}
//初始化_virtual_space
if (!_virtual_space.initialize(rs, rs.size())) {
warning("CMSMarkStack backing store failure");
return false;
}
assert(_virtual_space.committed_size() == rs.size(),
"didn't reserve backing store for all of CMS stack?");
//将申请内存的基地址作为base数组的起始地址
_base = (oop*)(_virtual_space.low());
_index = 0;
_capacity = size;
NOT_PRODUCT(_max_depth = 0);
return true;
}
其调用链如下:
2、pop / push / par_pop / par_push
pop就是弹出栈顶oop,push就是把oop压入栈顶,par版本就是多了一步获取锁的动作,其实现如下:
oop pop() {
if (!isEmpty()) {
//index先减1,在返回减一后的index对应的oop
return _base[--_index] ;
}
return NULL;
}
bool isEmpty() const { return _index == 0; }
bool push(oop ptr) {
if (isFull()) {
return false;
} else {
//先将index处的元素置为ptr,再将index加1
_base[_index++] = ptr;
NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
return true;
}
}
bool isFull() const {
assert(_index <= _capacity, "buffer overflow");
return _index == _capacity;
}
oop par_pop() {
MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
return pop();
}
bool par_push(oop ptr) {
MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
return push(ptr);
}
3、expand
expand方法用于扩容,不同于同样基于数组实现的ArrayList的扩容,这里只是重新申请了两倍MarkStack原来对应的内存区域,原来的内存区域直接释放了,其实现如下:
void CMSMarkStack::expand() {
//MarkStackSizeMax表示MarkStack的最大大小,64位下默认是512M
assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
if (_capacity == MarkStackSizeMax) {
//如果达到最大容量了
if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
}
return;
}
//扩容一倍
size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
//申请内存
ReservedSpace rs(ReservedSpace::allocation_align_size_up(
new_capacity * sizeof(oop)));
if (rs.is_reserved()) {
//释放原来的内存
_virtual_space.release();
//重试初始化
if (!_virtual_space.initialize(rs, rs.size())) {
fatal("Not enough swap for expanded marking stack");
}
//重置属性
_base = (oop*)(_virtual_space.low());
_index = 0;
_capacity = new_capacity;
} else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
//申请内存失败
gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
SIZE_FORMAT "K",
_capacity / K, new_capacity / K);
}
}
其调用链如下:
四、ChunkArray
ChunkArray表示一个保存Chunk地址的数组,其定义同样在在concurrentMarkSweepGeneration.hpp中,包含如下属性:
- size_t _index; //ChunkArray中包含的Chunk地址的个数
- size_t _capacity; //ChunkArray的最大容量
- size_t _overflows; //达到ChunkArray容量的次数
- HeapWord** _array; // 保存Chunk地址的数组基地址
重点关注以下方法的实现:
ChunkArray(HeapWord** a, size_t c):
_index(0), _capacity(c), _overflows(0), _array(a) {}
HeapWord* nth(size_t n) {
//返回索引为n的地址
assert(n < end(), "Out of bounds access");
return _array[n];
}
void record_sample(HeapWord* p, size_t sz) {
//将Chunk地址p保存到数组中
if (_index < _capacity) {
_array[_index++] = p;
} else {
++_overflows;
assert(_index == _capacity,
err_msg("_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
"): out of bounds at overflow#" SIZE_FORMAT,
_index, _capacity, _overflows));
}
}
来源:CSDN
作者:孙大圣666
链接:https://blog.csdn.net/qq_31865983/article/details/104099460