等值面,偏导数,切平面逼近
- Function of 1 variable .f(x)=sin(x)
- Function of 2 variables:
given(x, y)→get a number f(x, y)
Example f(x,y)=x2+y2
f(x, y)=temperature at point (x, y)
- or …3 or more parameters!
How to visualize f of 2 variables?
→gragh: z=f(x, y)
Ex:
f(x,y)=1−x2−y2
→in y-z plane: x=0,z=1−y2
→in x-z plane: $y=0,z=1-x^2
→in x-y plane: z=0,1−x2−y2=0
x2+y2=1 (unit circle)
等高线图(Coutour plot)
Shows all the points where f(x, y)=some fixed value(constant)
chosen at regular values
⇔ we slice the graph by horizontal plane z=c
f(x, y)=1为等高线(level curve)
偏导数(partial derivatives)
1)function of 1 variable f(x)
f′(x)=dxdf
limΔx→0Δxf(x+Δx)−f(x)
逼近表达式(Approximation formula)
x0→f(x0)
f(x)≈f(x0)+f′(x0).(x−x0)
2)function of 2 variable
∂x∂f(x0,y0)=limΔx→0Δxf(x0+Δx,y0)−f(x0,y0)
∂y∂f(x0,y0)=limΔy→0Δyf(x0,y0+Δy)−f(x0,y0)
物理上:∂x∂f=fx
treat y as constant
treat x as variable
Ex:
f(x,y)=x3y+y2
∂x∂f=x3+2y