Pandas rolling sum for multiply values separately

若如初见. 提交于 2020-01-25 08:33:04

问题


I have the following dataframe:

a = pd.DataFrame({'unit': [2, 2, 3, 3, 3, 4, 4, 4, 5], 
                 'date': [1, 2, 1, 2, 3, 1, 2, 3, 1], 
                 'revenue': [1, 1, 3, 5, 7, 6, 6, 2, 9]})

Pandas rolling.sum with window = 2:

a['rolled_sum'] = a.rolling(2, on='date').sum().shift(+1)['revenue']

computes this sum row by row:

 adunit   date  revenue  rolled_sum
0   2       1       1       NaN
1   2       2       1       NaN
2   3       1       3       2.0
3   3       2       5       4.0
4   3       3       7       8.0
5   4       1       6       12.0
6   4       2       6       13.0
7   4       3       2       12.0
8   5       1       9       8.0

I would like to have this rolling sum computed for each unit separately:

 adunit   date  revenue  rolled_sum
0   2       1       1       NaN
1   2       2       1       NaN
2   3       1       3       NaN
3   3       2       5       NaN
4   3       3       7       8.0
5   4       1       6       NaN
6   4       2       6       NaN
7   4       3       2       12.0
8   5       1       9       NaN

In other words: rolling sum should be performed for each unit separately. In my original dataset I have hundreds of units, and want to perform a rolling sum day-by-day for each of them.

Any ideas?

Many Thanks in advance :)

Andy


回答1:


IIUC, you can do rolling on groupby:

a['rolled_sum'] = (a.groupby('unit')
                    .rolling(2, on='date').sum()['revenue']
                    .groupby('unit').shift(1)
                    .to_numpy()
                  )

Output:

   unit  date  revenue  rolled_sum
0     2     1        1         NaN
1     2     2        1         NaN
2     3     1        3         NaN
3     3     2        5         NaN
4     3     3        7         8.0
5     4     1        6         NaN
6     4     2        6         NaN
7     4     3        2        12.0
8     5     1        9         NaN



回答2:


With your sorting you can mask where it shouldn't be set.

m = a.unit.eq(a.unit.shift()) & a.unit.eq(a.unit.shift(-1))
a['rolled_sum'] = (a.rolling(2, on='date').sum().shift(+1)['revenue']
                     .where(m.shift().fillna(False)))

   unit  date  revenue  rolled_sum
0     2     1        1         NaN
1     2     2        1         NaN
2     3     1        3         NaN
3     3     2        5         NaN
4     3     3        7         8.0
5     4     1        6         NaN
6     4     2        6         NaN
7     4     3        2        12.0
8     5     1        9         NaN


来源:https://stackoverflow.com/questions/58510308/pandas-rolling-sum-for-multiply-values-separately

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!