Robust Standard Errors in lm() using stargazer()

戏子无情 提交于 2020-01-25 04:14:26

问题


I have read a lot about the pain of replicate the easy robust option from STATA to R to use robust standard errors. I replicated following approaches: StackExchange and Economic Theory Blog. They work but the problem I face is, if I want to print my results using the stargazer function (this prints the .tex code for Latex files).

Here is the illustration to my problem:

reg1 <-lm(rev~id + source + listed + country , data=data2_rev)
stargazer(reg1)

This prints the R output as .tex code (non-robust SE) If i want to use robust SE, i can do it with the sandwich package as follow:

vcov <- vcovHC(reg1, "HC1")

if I now use stargazer(vcov) only the output of the vcovHC function is printed and not the regression output itself.

With the package lmtest() it is possible to print at least the estimator, but not the observations, R2, adj. R2, Residual, Residual St.Error and the F-Statistics.

lmtest::coeftest(reg1, vcov. = sandwich::vcovHC(reg1, type = 'HC1'))

This gives the following output:

t test of coefficients:

            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -2.54923    6.85521 -0.3719 0.710611   
id           0.39634    0.12376  3.2026 0.001722 **
source       1.48164    4.20183  0.3526 0.724960   
country     -4.00398    4.00256 -1.0004 0.319041   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

How can I add or get an output with the following parameters as well?

Residual standard error: 17.43 on 127 degrees of freedom
Multiple R-squared:  0.09676,   Adjusted R-squared:  0.07543 
F-statistic: 4.535 on 3 and 127 DF,  p-value: 0.00469

Did anybody face the same problem and can help me out? How can I use robust standard errors in the lm function and apply the stargazer function?


回答1:


You already calculated robust standard errors, and there's an easy way to include it in the stargazeroutput:

library("sandwich")
library("plm")
library("stargazer")

data("Produc", package = "plm")

# Regression    
model <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
             data = Produc, 
             index = c("state","year"),
             method="pooling")

# Adjust standard errors
cov1         <- vcovHC(model, type = "HC1")
robust_se    <- sqrt(diag(cov1))

# Stargazer output (with and without RSE)
stargazer(model, model, type = "text",
          se = list(NULL, robust_se))

Solution found here: https://www.jakeruss.com/cheatsheets/stargazer/#robust-standard-errors-replicating-statas-robust-option

Update I'm not so much into F-Tests. People are discussing those issues, e.g. https://stats.stackexchange.com/questions/93787/f-test-formula-under-robust-standard-error

When you follow http://www3.grips.ac.jp/~yamanota/Lecture_Note_9_Heteroskedasticity

"A heteroskedasticity-robust t statistic can be obtained by dividing an OSL estimator by its robust standard error (for zero null hypotheses). The usual F-statistic, however, is invalid. Instead, we need to use the heteroskedasticity-robust Wald statistic."

and use a Wald statistic here?



来源:https://stackoverflow.com/questions/58923112/robust-standard-errors-in-lm-using-stargazer

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!