RATE Function from EXCEL in Swift providing different results

和自甴很熟 提交于 2020-01-24 21:56:07

问题


func RATE(nper: Double, pmt: Double, pv: Double, fv: Double, type: Double, guess: Double) -> Double{
    var rate = guess
    var y: Double = 0
    var f: Double = 0
    var FINANCIAL_MAX_ITERATIONS: Double = 128
    var FINANCIAL_PRECISION = 1.0e-08
    if (abs(rate) < FINANCIAL_PRECISION) {
        y = pv * (1 + nper * rate) + pmt * (1 + rate * type) * nper + fv
    } else {
        f = exp(nper * log(1 + rate))
        y = pv * f + pmt * (1 / rate + type) * (f - 1) + fv
    }
    var y0 = pv + pmt * nper + fv
    var y1 = pv * f + pmt * (1 / rate + type) * (f - 1) + fv

    // find root by secant method
    var i: Double  = 0
    var x0: Double = 0
    var x1 = rate
    while ((abs(y0 - y1) > FINANCIAL_PRECISION) && (i < FINANCIAL_MAX_ITERATIONS)) {
        rate = (y1 * x0 - y0 * x1) / (y1 - y0)
        x0 = x1
        x1 = rate

        if (abs(rate) < FINANCIAL_PRECISION) {
            y = pv * (1 + nper * rate) + pmt * (1 + rate * type) * nper + fv
        } else {
            f = exp(nper * log(1 + rate))
            y = pv * f + pmt * (1 / rate + type) * (f - 1) + fv
        }

        y0 = y1
        y1 = y
        i += 1
    }

    return rate
}

RATE(nper: 252, pmt: -29002.85, pv: 2500000, fv: 0, type: 0, guess: 0.1) // -1.347153369879729 -- WRONG (Correct is 0.010833331)

RATE(nper: 24, pmt: -46.14, pv: 1000, fv: 0, type: 0, guess: 0.1) //0.008324438477500274 --- CORRECT

In above the first values gave wrong result than what I get in Excel but on 2nd values it gave correct result.


回答1:


I think your method is not converging for the example that doesn't work.

Nobody seems sure what method Excel uses, but there is speculation that it uses the Newton Raphson method, rather than the secant method.

I've done an implementation below using N-R which seems to work.

func pvCalc(nper: Double, pmt: Double, fv: Double, type: Int, rate: Double) -> Double {
    let pvPayments = -pmt / rate * (1 - 1 / pow(1 + rate, nper))
    let pvFV = -fv / pow(1 + rate, nper)
    return type == 0 ? pvPayments + pvFV : pvPayments * (1 + rate) + pvFV
}

func pvDeriv(nper: Double, pmt: Double, fv: Double, type: Int, rate: Double) -> Double {
    let derivPayments = pmt / pow(rate, 2) * (1 - 1 / pow(1 + rate, nper)) - pmt * nper / rate / pow(1 + rate, nper + 1)
    let derivFV = fv * nper / pow(1 + rate, nper + 1)
    if type == 0 {
        return derivPayments + derivFV
    } else {
        return (1 + rate) * derivPayments - pmt / rate * (1 - 1 / pow(1 + rate, nper)) + derivFV
    }
}

func RATE(nper: Double, pmt: Double, pv: Double, fv: Double, type: Int, guess: Double) -> Double{
    let FINANCIAL_MAX_ITERATIONS = 512
    let FINANCIAL_PRECISION = 1.0e-08
    var rate = guess
    for _ in 1...FINANCIAL_MAX_ITERATIONS {
        let current_pv = pvCalc(nper: nper, pmt: pmt, fv: fv, type: type, rate: rate)
        if abs(current_pv - pv) < FINANCIAL_PRECISION {
            return rate
        }
        let current_pvDeriv = pvDeriv(nper: nper, pmt: pmt, fv: fv, type: type, rate: rate)
        rate = rate - (current_pv - pv) / current_pvDeriv
    }
    return rate
}

RATE(nper: 252, pmt: -29002.85, pv: 2_500_000, fv: 0, type: 0, guess: 0.1) // 0.01083333120206857
RATE(nper: 24, pmt: -46.14, pv: 1000, fv: 0, type: 0, guess: 0.1) // 0.008324438477472666



回答2:


Here is a Swift port of the C++ code used for the RATE function in LibreOffice. The original source code can be found at https://cgit.freedesktop.org/libreoffice/core/tree/sc/source/core/tool/interpr2.cxx

These are setup to return nil if there is any error trying to calculate the rate.

func rateIteration(nper: Double, pmt: Double, pval: Double, fval: Double, type: Bool, guess: Double) -> Double? {
    // See also #i15090#
    // Newton-Raphson method: x(i+1) = x(i) - f(x(i)) / f'(x(i))
    // This solution handles integer and non-integer values of Nper different.
    // If ODFF will constraint Nper to integer, the distinction of cases can be
    // removed; only the integer-part is needed then.
    var valid = true
    var found = false
    var x = 0.0
    var xNew = 0.0
    var term = 0.0
    var termDerivation = 0.0
    var geoSeries = 0.0
    var geoSeriesDerivation = 0.0
    let iterationsMax = 150
    var count = 0
    let epsilonSmall = 1.0E-14
    let SCdEpsilon = 1.0E-7

    var pv = pval
    var fv = fval
    if type {
        // payment at beginning of each period
        fv = fv - pmt
        pv = pv + pmt
    }

    if nper == nper.rounded() {
        // Integer nper
        x = guess
        while !found && count < iterationsMax {
            let powNminues1 = pow(1 + x, nper - 1)
            let powN = powNminues1 * (1 + x)
            if x == 0.0 {
                geoSeries = nper
                geoSeriesDerivation = nper * (nper - 1) / 2
            } else {
                geoSeries = (powN - 1) / x
                geoSeriesDerivation = nper * powNminues1 / x - geoSeries / x
            }

            term = fv + pv * powN + pmt * geoSeries
            termDerivation = pv * nper * powNminues1 + pmt * geoSeriesDerivation
            if abs(term) < epsilonSmall {
                found = true // will catch root which is at an extreme
            } else {
                if termDerivation == 0.0 {
                    xNew = x + 1.1 * SCdEpsilon // move away from zero slope
                } else {
                    xNew = x - term / termDerivation
                }

                count += 1
                // more accuracy not possible in oscillating cases
                found = abs(xNew - x) < SCdEpsilon
                x = xNew
            }
        }

        valid = x > -1.0
    } else {
        // nper is not an integer value
        x = (guess < -1.0) ? -1.0 : guess
        while valid && !found && count < iterationsMax {
            if x == 0.0 {
                geoSeries = nper
                geoSeriesDerivation = nper * (nper - 1) / 2
            } else {
                geoSeries = (pow(1 + x, nper) - 1) / x
                geoSeriesDerivation = nper * pow(1 + x, nper - 1) / x - geoSeries / x
            }

            term = fv + pv * pow(1 + x, nper) + pmt * geoSeries
            termDerivation = pv * nper * pow(1 + x, nper - 1) + pmt * geoSeriesDerivation
            if abs(term) < epsilonSmall {
                found = true // will catch root which is at an extreme
            } else {
                if termDerivation == 0.0 {
                    xNew = x + 1.1 * SCdEpsilon
                } else {
                    xNew = x - term / termDerivation
                }

                count += 1
                // more accuracy not possible in oscillating cases
                found = abs(xNew - x) < SCdEpsilon
                x = xNew
                valid = x >= -1.0 // otherwise pow(1 + x, nper) will fail
            }
        }
    }

    if valid && found {
        return x
    } else {
        return nil
    }
}

func RATE(nper: Double, pmt: Double, pv: Double, fv: Double, type: Double = 0, guess: Double = 0.1) -> Double? {
    let payType = type != 0.0

    if nper <= 0.0 { // constraint from ODFF spec
        return nil
    }

    if let res = rateIteration(nper: nper, pmt: pmt, pval: pv, fval: fv, type: payType, guess: guess) {
        return res
    } else {
        if guess == 0.1 {
            /* TODO: this is rather ugly, instead of looping over different
             * guess values and doing a Newton goal seek for each we could
             * first insert the values into the RATE equation to obtain a set
             * of y values and then do a bisecting goal seek, possibly using
             * different algorithms. */
            var x = guess
            for step in 2...10 {
                var g = x * Double(step)
                if let res = rateIteration(nper: nper, pmt: pmt, pval: pv, fval: fv, type: payType, guess: g) {
                    return res
                } else {
                    g = x / Double(step)
                    if let res = rateIteration(nper: nper, pmt: pmt, pval: pv, fval: fv, type: payType, guess: g) {
                        return res
                    }
                }
            }
        }
    }

    return nil
}

Here are your two test cases:

RATE(nper: 252, pmt: -29002.85, pv: 2500000, fv: 0)
RATE(nper: 24, pmt: -46.14, pv: 1000, fv: 0)

The result is:

0.010833331202068584
0.0083244384774994358



来源:https://stackoverflow.com/questions/49092747/rate-function-from-excel-in-swift-providing-different-results

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!