问题
I am experimenting with BERT embeddings following this code https://github.com/strongio/keras-bert/blob/master/keras-bert.py
These are the important bits of the code (lines 265-267):
bert_output = BertLayer(n_fine_tune_layers=3)(bert_inputs)
dense = tf.keras.layers.Dense(256, activation="relu")(bert_output)
pred = tf.keras.layers.Dense(1, activation="sigmoid")(dense)
I want to add a GRU between BertLayer and the Dense layer
bert_output = BertLayer(n_fine_tune_layers=3)(bert_inputs)
gru_out = tf.keras.layers.GRU(100, activation='sigmoid')(bert_output)
dense = tf.keras.layers.Dense(256, activation="relu")(gru_out)
pred = tf.keras.layers.Dense(1, activation="sigmoid")(dense)
but I get this error TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'
.
I am not entirely sure how to address this problem. Do I need to reshape bert_output
or do I need to create an Embedding
layer that the GRU
can handle?
回答1:
I have had the same error, the solution to this is
embedding_size = 768
bert_output = BertLayer(n_fine_tune_layers=3)(bert_inputs)
# Reshape bert_output before passing it the GRU
bert_output_ = tf.keras.layers.Reshape((max_seq_length, embedding_size))(bert_output)
gru_out = tf.keras.layers.GRU(100, activation='sigmoid')(bert_output_)
dense = tf.keras.layers.Dense(256, activation="relu")(gru_out)
pred = tf.keras.layers.Dense(1, activation="sigmoid")(dense)
I hope it works, you can refer to my question if needed
来源:https://stackoverflow.com/questions/56610720/add-lstm-gru-to-bert-embeddings-in-keras-tensorflow