一、介绍
1、模板匹配
通俗讲就是以图找图,通过图中的一部分来找它在图中的位置(模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域)。
模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。
它是图像处理中最基本、最常用的匹配方法。
2、作用有局限性
必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性
模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。
3、工作原理
在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。
常见的几种模板匹配算法
①TM_SQDIFF是平方差匹配;TM_SQDIFF_NORMED是标准平方差匹配。利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大。所以这个函数和其他函数是不一样的
②TM_CCORR是相关性匹配;TM_CCORR_NORMED是标准相关性匹配。采用模板和图像间的乘法操作,数越大,越接近1表示匹配程度较高, 0表示最坏的匹配效果。
③TM_CCOEFF是相关性系数匹配;TM_CCOEFF_NORMED是标准相关性系数匹配。将模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性(随机序列)。
总结:随着从简单的测量(平方差)到更复杂的测量(相关系数),我们可获得越来越准确的匹配(同时也意味着越来越大的计算代价)。
在这里我们是通过这三种方式来匹配:cv.TM_SQDIFF_NORMED, cv.TM_CCORR_NORMED, cv.TM_CCOEFF_NORMED
4、涉及函数
(1)目标匹配函数result = cv.matchTemplate(target,tpl,md)
函数原型为:matchTemplate(image, templ, method[, result[, mask]]) -> result
image 参数表示待搜索源图像,必须是8位整数或32位浮点。
templ 参数表示模板图像,必须不大于源图像并具有相同的数据类型。
method 参数表示计算匹配程度的方法。
result 参数表示匹配结果图像,必须是单通道32位浮点。如果image的尺寸为W x H,templ的尺寸为w x h,则result的尺寸为(W-w+1)x(H-h+1)。
(2)min_val,max_val,min_loc,max_loc = cv.minMaxLoc(result)
opencv的函数minMaxLoc:在给定的矩阵中寻找最大和最小值,并给出它们的位置。 该功能不适用于多通道阵列。 如果您需要在所有通道中查找最小或最大元素,要先将阵列重新解释为单通道。
函数minMaxLoc原型为:minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
src参数表示输入单通道图像。
mask参数表示用于选择子数组的可选掩码。
minVal参数表示返回的最小值,如果不需要,则使用NULL。
maxVal参数表示返回的最大值,如果不需要,则使用NULL。
minLoc参数表示返回的最小位置的指针(在2D情况下); 如果不需要,则使用NULL。
maxLoc参数表示返回的最大位置的指针(在2D情况下); 如果不需要,则使用NULL。
tpl = cv.imread('11.jpg') target = cv.imread('1.jpg') cv.imshow('template_butterfly',tpl) cv.imshow('target',target) methods = [cv.TM_SQDIFF_NORMED,cv.TM_CCORR_NORMED,cv.TM_CCOEFF_NORMED] tpl_h,tpl_w = tpl.shape[:2] for md in methods: result = cv.matchTemplate(target,tpl,md) #result是模板图像去匹配源图像,在源图像的区域位置图像 min_val,max_val,min_loc,max_loc = cv.minMaxLoc(result) print("--------------%s--------------" % md) print("min_val", min_val) print("max_val", max_val) print("min_loc", min_loc) print("max_loc", max_loc) print("--------------%s--------------\n" % md) --------------1--------------min_val 6.713293259963393e-05 #标准差越小,匹配效果越好max_val 0.6963181495666504min_loc (180, 90)max_loc (478, 235)--------------1----------------------------3--------------min_val 0.7413668632507324max_val 0.9770615100860596 #相关性越接近一,匹配效果越好min_loc (496, 85)max_loc (180, 90)--------------3----------------------------5--------------min_val -0.43208545446395874max_val 0.8136414289474487 #相关性越接近一,匹配效果越好min_loc (871, 75)max_loc (180, 90)--------------5--------------
查看min_loc和max_loc关系
cv.line(target,min_loc,max_loc,(0,255,255),2)
二、代码实现
import cv2 as cv import numpy as np import matplotlib.pyplot as plt from PIL import Image def template_demo(): tpl = cv.imread('11.jpg') target = cv.imread('1.jpg') cv.imshow('template_butterfly',tpl) cv.imshow('target',target) methods = [cv.TM_SQDIFF_NORMED,cv.TM_CCORR_NORMED,cv.TM_CCOEFF_NORMED] tpl_h,tpl_w = tpl.shape[:2] for md in methods: result = cv.matchTemplate(target,tpl,md) #result是模板图像去匹配源图像,再源图像的区域位置图像 min_val,max_val,min_loc,max_loc = cv.minMaxLoc(result) #获取的是每种公式中计算出来的值,每个像素点都对应一个值 if md == cv.TM_SQDIFF_NORMED: t1 = min_loc #最小位置指针 else: t1 = max_loc #最大位置指针 br = (t1[0]+tpl_w,t1[1] + tpl_h) cv.rectangle(target,t1,br,(0,0,255),2) #画个矩形 #cv.line(target,min_loc,max_loc,(0,255,255),2) #画条线,连接最小位置和最大位置(就是匹配的图片左上角和右下角) cv.imshow('match_%s'%md,target) template_demo() cv.waitKey(0) cv.destroyAllWindows()
来源:https://www.cnblogs.com/pacino12134/p/9870452.html