简介
VINS-Mono 是香港科技大学开源的一个VIO,我简单的测试了,发现效果不错。做个简单的笔记,详细的内容等我毕设搞完再弄。
代码主要分为前端(feature tracker),后端(sliding window, loop closure),还加了初始化(visual-imu aligment)
Feature tracker
这部分代码在feature_tracker
包下面,主要是接收图像topic,使用KLT光流算法跟踪特征点,同时保持每一帧图像有最少的(100-300)个特征点。
根据配置文件中的freq
,确定每隔多久的时候,把检测到的特征点打包成/feature_tracker/feature
topic 发出去,
要是没有达到发送的时间,这幅图像的feature就作为下一时刻的
KLT追踪的特征点,就是不是每一副图像都要处理的,那样计算时间大了,而且数据感觉冗余,帧与帧之间图像的差距不会那么明显。
这里的freq
配置文件建议至少设置10,为了保证好的前端。
void img_callback(const sensor_msgs::ImageConstPtr &img_msg) { for (int i = 0; i < NUM_OF_CAM; i++) { ROS_DEBUG("processing camera %d", i); if (i != 1 || !STEREO_TRACK) //调用FeatureTracker的readImage trackerData[i].readImage(ptr->image.rowRange(ROW * i, ROW * (i + 1))); } for (unsigned int i = 0;; i++) { bool completed = false; for (int j = 0; j < NUM_OF_CAM; j++) if (j != 1 || !STEREO_TRACK) //更新feature的ID completed |= trackerData[j].updateID(i); if (!completed) break; } //发布特征点topic if (round(1.0 * pub_count / (img_msg->header.stamp.toSec() - first_image_time)) <= FREQ) { sensor_msgs::PointCloudPtr feature_points(new sensor_msgs::PointCloud); //特征点的id,图像的(u,v)坐标 sensor_msgs::ChannelFloat32 id_of_point; sensor_msgs::ChannelFloat32 u_of_point; sensor_msgs::ChannelFloat32 v_of_point; pub_img.publish(feature_points); } if (SHOW_TRACK) { //根据特征点被追踪的次数,显示他的颜色,越红表示这个特征点看到的越久,一幅图像要是大部分特征点是蓝色,前端tracker效果很差了,估计要挂了 double len = std::min(1.0, 1.0 * trackerData[i].track_cnt[j] / WINDOW_SIZE); cv::circle(tmp_img, trackerData[i].cur_pts[j], 2, cv::Scalar(255 * (1 - len), 0, 255 * len), 2); } }
void FeatureTracker::readImage(const cv::Mat &_img) { //直方图均匀化 //if image is too dark or light, trun on equalize to find enough features if (EQUALIZE) { cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8)); TicToc t_c; clahe->apply(_img, img); ROS_DEBUG("CLAHE costs: %fms", t_c.toc()); } if (cur_pts.size() > 0) { TicToc t_o; vector<uchar> status; vector<float> err; //根据上一时刻的cur_img,cur_pts,寻找当前时刻的forw_pts, cv::calcOpticalFlowPyrLK(cur_img, forw_img, cur_pts, forw_pts, status, err, cv::Size(21, 21), 3); } if (img_cnt == 0) { //根据fundamentalMatrix中的ransac去除一些outlier rejectWithF(); //跟新特征点track的次数 for (auto &n : track_cnt) n++; //为下面的goodFeaturesToTrack保证相邻的特征点之间要相隔30个像素,设置mask image setMask(); int n_max_cnt = MAX_CNT - static_cast<int>(forw_pts.size()); if (n_max_cnt > 0) { //保证每个image有足够的特征点,不够就新提取 cv::goodFeaturesToTrack(forw_img, n_pts, MAX_CNT - forw_pts.size(), 0.1, MIN_DIST, mask); } } }
Slide Window
主要是对imu的数据进行预积分,vision重投影误差的构造,loop-closure的检测,slide-window的维护 ,marginzation prior的维护,东西比较多。
loop-closure的检测是使用视觉词带的,这里的特征不是feature-tracker的,那样子太少了。是通过订阅IMAGE_TOPIC
,传递到闭环检测部分,重新检测的,这个我还没有认真看(做了很多限制,为了搜索的速度,词带不会很大,做了很多限制,从论文上看优化的方程只是加了几个vision重投影的限制,速度不会太慢)。
是只有4个自由度的优化,roll, pitch由于重力对齐的原因是可观测的,就不去优化。
最主要的还是下面这个最小二乘法方程构建,主要的代码我列出来。
void Estimator::processIMU(double dt, const Vector3d &linear_acceleration, const Vector3d &angular_velocity) { if (frame_count != 0) { pre_integrations[frame_count]->push_back(dt, linear_acceleration, angular_velocity); //调用imu的预积分,propagation ,计算对应的雅可比矩阵 //if(solver_flag != NON_LINEAR) tmp_pre_integration->push_back(dt, linear_acceleration, angular_velocity); dt_buf[frame_count].push_back(dt); linear_acceleration_buf[frame_count].push_back(linear_acceleration); angular_velocity_buf[frame_count].push_back(angular_velocity); //提供imu计算的当前位置,速度,作为优化的初值 int j = frame_count; Vector3d un_acc_0 = Rs[j] * (acc_0 - Bas[j]) - g; Vector3d un_gyr = 0.5 * (gyr_0 + angular_velocity) - Bgs[j]; Rs[j] *= Utility::deltaQ(un_gyr * dt).toRotationMatrix(); Vector3d un_acc_1 = Rs[j] * (linear_acceleration - Bas[j]) - g; Vector3d un_acc = 0.5 * (un_acc_0 + un_acc_1); Ps[j] += dt * Vs[j] + 0.5 * dt * dt * un_acc; Vs[j] += dt * un_acc; } } void Estimator::processImage(const map<int, vector<pair<int, Vector3d>>> &image, const std_msgs::Header &header) { //根据视差判断是不是关键帧, if (f_manager.addFeatureCheckParallax(frame_count, image)) marginalization_flag = MARGIN_OLD; else marginalization_flag = MARGIN_SECOND_NEW; ImageFrame imageframe(image, header.stamp.toSec()); imageframe.pre_integration = tmp_pre_integration; all_image_frame.insert(make_pair(header.stamp.toSec(), imageframe)); tmp_pre_integration = new IntegrationBase{acc_0, gyr_0, Bas[frame_count], Bgs[frame_count]}; //参数要是设置imu-camera的外参数未知,也可以帮你求解的 if(ESTIMATE_EXTRINSIC == 2) { } //初始化的流程 if (solver_flag == INITIAL) { if (frame_count == WINDOW_SIZE) { bool result = false; if( ESTIMATE_EXTRINSIC != 2 && (header.stamp.toSec() - initial_timestamp) > 0.1) { //构造sfm,优化imu偏差,加速度g,尺度的确定 result = initialStructure(); initial_timestamp = header.stamp.toSec(); } if(result) { solver_flag = NON_LINEAR; solveOdometry(); slideWindow(); f_manager.removeFailures(); ROS_INFO("Initialization finish!"); last_R = Rs[WINDOW_SIZE]; last_P = Ps[WINDOW_SIZE]; last_R0 = Rs[0]; last_P0 = Ps[0]; } else slideWindow(); } //先凑够window-size的数量的Frame else frame_count++; } else { solveOdometry(); //失败的检测 if (failureDetection()) { clearState(); setParameter(); return; } slideWindow(); f_manager.removeFailures(); // prepare output of VINS key_poses.clear(); for (int i = 0; i <= WINDOW_SIZE; i++) key_poses.push_back(Ps[i]); last_R = Rs[WINDOW_SIZE]; last_P = Ps[WINDOW_SIZE]; last_R0 = Rs[0]; last_P0 = Ps[0]; } }
void Estimator::slideWindow() { //WINDOW_SIZE中的参数的之间调整,同时FeatureManager进行管理feature,有些点要删除掉,有些点的深度要在下一frame表示(start frame已经删除了) Headers[frame_count - 1] = Headers[frame_count]; Ps[frame_count - 1] = Ps[frame_count]; Vs[frame_count - 1] = Vs[frame_count]; Rs[frame_count - 1] = Rs[frame_count]; Bas[frame_count - 1] = Bas[frame_count]; Bgs[frame_count - 1] = Bgs[frame_count]; delete pre_integrations[WINDOW_SIZE]; pre_integrations[WINDOW_SIZE] = new IntegrationBase{acc_0, gyr_0, Bas[WINDOW_SIZE], Bgs[WINDOW_SIZE]}; //清楚数据,给下一副图像提供空间 dt_buf[WINDOW_SIZE].clear(); linear_acceleration_buf[WINDOW_SIZE].clear(); angular_velocity_buf[WINDOW_SIZE].clear(); } void Estimator::solveOdometry() { if (frame_count < WINDOW_SIZE) return; if (solver_flag == NON_LINEAR) { //三角化点 f_manager.triangulate(Ps, tic, ric); ROS_DEBUG("triangulation costs %f", t_tri.toc()); optimization(); } }
void Estimator::optimization() { //添加frame的state,(p,v,q,b_a,b_g),就是ceres要优化的参数 for (int i = 0; i < WINDOW_SIZE + 1; i++) { ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization(); problem.AddParameterBlock(para_Pose[i], SIZE_POSE, local_parameterization); problem.AddParameterBlock(para_SpeedBias[i], SIZE_SPEEDBIAS); } //添加camera-imu的外参数 for (int i = 0; i < NUM_OF_CAM; i++) { ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization(); problem.AddParameterBlock(para_Ex_Pose[i], SIZE_POSE, local_parameterization); } //为ceres参数赋予初值 vector2double(); //添加margination residual, 先验知识 //他的Evaluate函数看好,固定了线性化的点,First Jacobian Estimate if (last_marginalization_info) { // construct new marginlization_factor MarginalizationFactor *marginalization_factor = new MarginalizationFactor(last_marginalization_info); problem.AddResidualBlock(marginalization_factor, NULL, last_marginalization_parameter_blocks); } //添加imu的residual for (int i = 0; i < WINDOW_SIZE; i++) { int j = i + 1; if (pre_integrations[j]->sum_dt > 10.0) continue; IMUFactor* imu_factor = new IMUFactor(pre_integrations[j]); problem.AddResidualBlock(imu_factor, NULL, para_Pose[i], para_SpeedBias[i], para_Pose[j], para_SpeedBias[j]); } //添加vision的residual for (auto &it_per_id : f_manager.feature) { for (auto &it_per_frame : it_per_id.feature_per_frame) { imu_j++; if (imu_i == imu_j) { continue; } Vector3d pts_j = it_per_frame.point; ProjectionFactor *f = new ProjectionFactor(pts_i, pts_j); problem.AddResidualBlock(f, loss_function, para_Pose[imu_i], para_Pose[imu_j], para_Ex_Pose[0], para_Feature[feature_index]); f_m_cnt++; } } //添加闭环的参数和residual if(LOOP_CLOSURE) { ceres::LocalParameterization *local_parameterization = new PoseLocalParameterization(); problem.AddParameterBlock(front_pose.loop_pose, SIZE_POSE, local_parameterization); if(front_pose.features_ids[retrive_feature_index] == it_per_id.feature_id) { Vector3d pts_j = Vector3d(front_pose.measurements[retrive_feature_index].x, front_pose.measurements[retrive_feature_index].y, 1.0); Vector3d pts_i = it_per_id.feature_per_frame[0].point; ProjectionFactor *f = new ProjectionFactor(pts_i, pts_j); problem.AddResidualBlock(f, loss_function, para_Pose[start], front_pose.loop_pose, para_Ex_Pose[0], para_Feature[feature_index]); retrive_feature_index++; loop_factor_cnt++; } } //设置了优化的最长时间,保证实时性 if (marginalization_flag == MARGIN_OLD) options.max_solver_time_in_seconds = SOLVER_TIME * 4.0 / 5.0; else options.max_solver_time_in_seconds = SOLVER_TIME; // 求解 ceres::Solve(options, &problem, &summary); // http://blog.csdn.net/heyijia0327/article/details/53707261#comments // http://blog.csdn.net/heyijia0327/article/details/52822104 if (marginalization_flag == MARGIN_OLD) { //如果当前帧是关键帧的,把oldest的frame所有的信息margination,作为下一时刻的先验知识,参考上面的两个网址,大神的解释很明白 } else{ //如果当前帧不是关键帧的,把second newest的frame所有的视觉信息丢弃掉,imu信息不丢弃,记住不是做margination,是为了保持矩阵的稀疏性 } }
后续
imu的参数很重要,还有就是硬件同步,global shutter的摄像头很重要。我要是动作快的话,效果就不行了。但人家的视频感觉效果很不错。
这个还要继续弄硬件和代码原理,代码中最小二乘法优化中的FOCAL_LENGTH
感觉要根据自己的摄像头设置,还没有具体看,视觉信息矩阵的设置还没有看。
工程中具体的情况还是要自己解决,
来源:https://www.cnblogs.com/shhu1993/p/6938715.html