问题
I'm trying to reduce the memory usage for the lock objects of segmented data. See my questions here and here. Or just assume you have a byte array and every 16 bytes can (de)serialize into an object. Let us call this a "row" with row length of 16 bytes. Now if you modify such a row from a writer thread and read from multiple threads you need locking. And if you have a byte array size of 1MB (1024*1024) this means 65536 rows and the same number of locks.
This is a bit too much, also that I need much larger byte arrays, and I would like to reduce it to something roughly proportional to the number of threads. My idea was to create a
ConcurrentHashMap<Integer, LockHelper> concurrentMap;
where Integer
is the row index and before a thread 'enters' a row it puts a lock object in this map (got this idea from this answer). But no matter what I think through I cannot find an approach that is really thread-safe:
// somewhere else where we need to write or read the row
LockHelper lock1 = new LockHelper();
LockHelper lock = concurrentMap.putIfAbsent(rowIndex, lock1);
lock.addWaitingThread(); // is too late
synchronized(lock) {
try {
// read or write row at rowIndex e.g. writing like
bytes[rowIndex/16] = 1;
bytes[rowIndex/16 + 1] = 2;
// ...
} finally {
if(lock.noThreadsWaiting())
concurrentMap.remove(rowIndex);
}
}
Do you see a possibility to make this thread-safe?
I have the feeling that this will look very similar like the concurrentMap.compute
contstruct (e.g. see this answer) or could I even utilize this method?
map.compute(rowIndex, (key, value) -> {
if(value == null)
value = new Object();
synchronized (value) {
// access row
return value;
}
});
map.remove(rowIndex);
Is the value and the 'synchronized' necessary at all as we already know the compute operation is atomically?
// null is forbidden so use the key also as the value to avoid creating additional objects
ConcurrentHashMap<Integer, Integer> map = ...;
// now the row access looks really simple:
map.compute(rowIndex, (key, value) -> {
// access row
return key;
});
map.remove(rowIndex);
BTW: Since when we have this compute in Java. Since 1.8? Cannot find this in the JavaDocs
Update: I found a very similar question here with userIds instead rowIndices, note that the question contains an example with several problems like missing final
, calling lock
inside the try-finally
-clause and lack of shrinking the map. Also there seems to be a library JKeyLockManager for this purpose but I don't think it is thread-safe.
Update 2: The solution seem to be really simple as Nicolas Filotto pointed out how to avoid the removal:
map.compute(rowIndex, (key, value) -> {
// access row
return null;
});
So this is really less memory intense BUT the simple segment locking with synchronized
is at least 50% faster in my scenario.
回答1:
Is the value and the
synchronized
necessary at all as we already know the compute operation is atomically?
I confirm that it is not needed to add a synchronized
block in this case as the compute
method is done atomically as stated in the Javadoc of ConcurrentHashMap#compute(K key, BiFunction<? super K,? super V,? extends V> remappingFunction)
that has been added with BiFunction
since Java 8
, I quote:
Attempts to compute a mapping for the specified key and its current mapped value (or
null
if there is no current mapping). The entire method invocation is performed atomically. Some attempted update operations on this map by other threads may be blocked while computation is in progress, so the computation should be short and simple, and must not attempt to update any other mappings of thisMap
.
What you try to achieve with the compute
method could be totally atomic if you make your BiFunction
always returns null
to remove the key atomically too such that everything will be done atomically.
map.compute(
rowIndex,
(key, value) -> {
// access row here
return null;
}
);
This way you will then fully rely on the locking mechanism of a ConcurrentHashMap
to synchronize your accesses to your rows.
来源:https://stackoverflow.com/questions/39675003/concurrent-byte-array-access-in-java-with-as-few-locks-as-possible