自然语言18.2_NLTK命名实体识别

六月ゝ 毕业季﹏ 提交于 2020-01-18 05:38:26

 

python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

机器学习,统计项目合作QQ:231469242

http://blog.csdn.net/u010718606/article/details/50148261参考

NLTK中对于很多自然语言处理应用有着开箱即用的api,但是结果往往让人弄不清楚状况。
下面的例子使用NLTK进行命名实体的识别。第一例中,Apple成功被识别出来,而第二例并未被识别。究竟是什么原因导致这样的结果,接下来一探究竟。

In [1]: import nltk
In [2]: tokens = nltk.word_tokenize('I am very excited about the next generation of Apple products.')
In [3]: tokens = nltk.pos_tag(tokens)
In [4]: print tokens
[('I', 'PRP'), ('am', 'VBP'), ('very', 'RB'), ('excited', 'JJ'), ('about', 'IN'), ('the', 'DT'), ('next', 'JJ'), ('generation', 'NN'), ('of', 'IN'), ('Apple', 'NNP'), ('products', 'NNS'), ('.', '.')]
In [5]: tree = nltk.ne_chunk(tokens)
In [6]: print tree
(S
  I/PRP
  am/VBP
  very/RB
  excited/JJ
  about/IN
  the/DT
  next/JJ
  generation/NN
  of/IN
  (GPE Apple/NNP)
  products/NNS
  ./.)
In [7]: tokens = nltk.word_tokenize('I bought these Apple products today.')
In [8]: tokens = nltk.pos_tag(tokens)
In [9]: print tokens
['I', 'bought', 'these', 'Apple', 'products', 'today', '.']
In [10]: tree = nltk.ne_chunk(tokens)
In [11]: print tree
(S I/PRP bought/VBD these/DT Apple/NNP products/NNS today/NN ./.)

 

最大熵算法

注意到在上述两个例子Apple这个词被词性标注为NNP(NNP是宾夕法尼亚大学树图资料库II为专有名词,单数)。另外,这两个单词都以大写字 母开始。为什么Apple在1例中被标记为GPE(地缘政治实体),而2例未标记?另外,为什么Apple标记为GPE,而不是ORG(组织机构)?

NLTK的命名实体识别是通过使用的MaxEnt分类器。MaxEnt分类器工作有两个原则:1.总是试图保持均匀分布(即最大化熵),2.保持其 统计概率与经验数据一致。经验数据来源于语料库,通过手动标记,所以大多数标记数据并不是免费的。NLTK不提供其训练命名实体识别器的语料库(训练数据 来自ACE(自动内容抽取))。NLTK所提供的是一个pickle文件(在nltk_data/chunkers/目录下),而这个pickle文件, 就是训练好的MaxEnt分类器实例。     

➜  maxent_ne_chunker  tree
.
├── english_ace_binary.pickle
├── english_ace_multiclass.pickle
└── PY3
    ├── english_ace_binary.pickle
    └── english_ace_multiclass.pickle

要训练良好的监督学习的算法基于良好的特征。在命名实体识别中,特征可能是这个词是否包含一个大写字母。所以NLTK使用的特征有哪些呢?下面我列出他们: 

- 词的形状(是否包含数字/首字母大写/包含符号)  
- 词的长度
- 词的前三个字母
- 词尾三个字母 
- 词性标签
- 词本身 
- 该词是否存在
- 该词前面词的词性(前面是否有名词)  
- 前词词性
- 后词词性
- 前词本身 
- 后词本身 
- …

下面的代码可以列出NLTK中所使用的标签

import nltk

# 载入序列化对象
chunker = nltk.data.load('chunkers/maxent_ne_chunker/english_ace_multiclass.pickle')

# 最大熵分类器
maxEnt = chunker._tagger.classifier()

def maxEnt_report():
    maxEnt = chunker._tagger.classifier()
    print 'These are the labels used by the NLTK\'s NEC...'
    print maxEnt.labels()
    print ''

    print 'These are the most informative features found in the ACE corpora...'
    maxEnt.show_most_informative_features()

def ne_report(sentence, report_all=False):

    # 词性标记
    tokens = nltk.word_tokenize(sentence)
    tokens = nltk.pos_tag(tokens)

    tags = []
    for i in range(0, len(tokens)):
        featureset = chunker._tagger.feature_detector(tokens, i, tags)
        tag = chunker._tagger.choose_tag(tokens, i, tags)
        if tag != 'O' or report_all:
            print '\nExplanation on the why the word \'' + tokens[i][0] + '\' was tagged:'
            featureset = chunker._tagger.feature_detector(tokens, i, tags)
            maxEnt.explain(featureset)
        tags.append(tag)

 

下面的输出报告中列出了NLTK所使用的标签,”I-“,”B-“, “O”前缀的含义为包含/开始/例外(inside/begin/others)标记。当一块开始,第一个词是前缀“B”来表示这个词是一个块的开始。下 一个单词,如果它属于同一块,将以”I-“前缀,表示这是块的一部分,而不是开始。如果一个词不属于一块,贴上“O”,这意味着它是在外面。

➜  test  python dd.py 
These are the labels used by the NLTK's NEC...
['I-GSP', 'B-LOCATION', 'B-GPE', 'I-ORGANIZATION', 'I-PERSON', 'O', 'I-FACILITY', 'I-LOCATION', 'B-PERSON', 'B-FACILITY', 'B-GSP', 'B-ORGANIZATION', 'I-GPE']

These are the most informative features found in the ACE corpora...
  10.125 bias==True and label is 'O'
   6.631 suffix3=='day' and label is 'O'
  -6.207 bias==True and label is 'I-GSP'
   5.628 prevtag=='O' and label is 'O'
  -4.740 shape=='upcase' and label is 'O'
   4.106 shape+prevtag=='<function shape at 0x8bde0d4>+O' and label is 'O'
  -3.994 shape=='mixedcase' and label is 'O'
   3.992 pos+prevtag=='NNP+B-PERSON' and label is 'I-PERSON'
   3.890 prevtag=='I-ORGANIZATION' and label is 'I-ORGANIZATION'
   3.879 shape+prevtag=='<function shape at 0x8bde0d4>+I-ORGANIZATION' and label is 'I-ORGANIZATION'

Note:
- GPE is Geo-Political Entity
- GSP is Geo-Socio-Political group

例1输出:

Explanation on the why the word 'Apple' was tagged:
  Feature                                            B-GPE       O B-ORGAN   B-GSP
  --------------------------------------------------------------------------------
  prevtag=='O' (1)                                   3.767
  shape=='upcase' (1)                                2.701
  pos+prevtag=='NNP+O' (1)                           2.254
  en-wordlist==False (1)                             2.095
  label is 'B-GPE' (1)                              -2.005
  bias==True (1)                                    -1.975
  prevword=='of' (1)                                 0.742
  pos=='NNP' (1)                                     0.681
  nextpos=='nns' (1)                                 0.661
  prevpos=='IN' (1)                                  0.311
  wordlen==5 (1)                                     0.113
  nextword=='products' (1)                           0.060
  bias==True (1)                                            10.125
  prevtag=='O' (1)                                           5.628
  shape=='upcase' (1)                                       -4.740
  prevpos=='IN' (1)                                         -1.668
  label is 'O' (1)                                          -1.075
  pos=='NNP' (1)                                            -1.024
  suffix3=='ple' (1)                                         0.797
  en-wordlist==False (1)                                     0.698
  wordlen==5 (1)                                            -0.449
  prevword=='of' (1)                                        -0.217
  nextpos=='nns' (1)                                         0.104
  prefix3=='app' (1)                                         0.089
  pos+prevtag=='NNP+O' (1)                                   0.011
  nextword=='products' (1)                                   0.005
  prevtag=='O' (1)                                                   3.389
  pos+prevtag=='NNP+O' (1)                                           1.725
  bias==True (1)                                                     0.955
  en-wordlist==False (1)                                             0.837
  label is 'B-ORGANIZATION' (1)                                      0.718
  nextpos=='nns' (1)                                                 0.365
  wordlen==5 (1)                                                    -0.351
  pos=='NNP' (1)                                                     0.174
  prevpos=='IN' (1)                                                 -0.139
  prevword=='of' (1)                                                 0.131
  prefix3=='app' (1)                                                -0.126
  shape=='upcase' (1)                                               -0.084
  suffix3=='ple' (1)                                                -0.077
  prevtag=='O' (1)                                                           2.925
  pos+prevtag=='NNP+O' (1)                                                   2.213
  shape=='upcase' (1)                                                        0.929
  en-wordlist==False (1)                                                     0.891
  bias==True (1)                                                            -0.592
  label is 'B-GSP' (1)                                                      -0.565
  prevpos=='IN' (1)                                                          0.410
  nextpos=='nns' (1)                                                         0.399
  pos=='NNP' (1)                                                             0.393
  prevword=='of' (1)                                                         0.184
  wordlen==5 (1)                                                             0.177
  ---------------------------------------------------------------------------------
  TOTAL:                                             9.406   8.283   7.515   7.366
  PROBS:                                             0.453   0.208   0.122   0.110

最后一行中列出的概率加起来加起来是0.893,而非1。这是因为只输出概率最大的四类标签。

例2输出:

Explanation on the why the word 'Apple' was tagged:
  Feature                                                O   B-GPE B-ORGAN B-LOCAT
  --------------------------------------------------------------------------------
  bias==True (1)                                    10.125
  prevtag=='O' (1)                                   5.628
  shape=='upcase' (1)                               -4.740
  label is 'O' (1)                                  -1.075
  pos=='NNP' (1)                                    -1.024
  suffix3=='ple' (1)                                 0.797
  en-wordlist==False (1)                             0.698
  prevpos=='DT' (1)                                  0.585
  wordlen==5 (1)                                    -0.449
  nextpos=='nns' (1)                                 0.104
  prefix3=='app' (1)                                 0.089
  prevword=='these' (1)                             -0.024
  pos+prevtag=='NNP+O' (1)                           0.011
  nextword=='products' (1)                           0.005
  prevtag=='O' (1)                                           3.767
  shape=='upcase' (1)                                        2.701
  pos+prevtag=='NNP+O' (1)                                   2.254
  en-wordlist==False (1)                                     2.095
  label is 'B-GPE' (1)                                      -2.005
  bias==True (1)                                            -1.975
  pos=='NNP' (1)                                             0.681
  nextpos=='nns' (1)                                         0.661
  prevpos=='DT' (1)                                         -0.181
  wordlen==5 (1)                                             0.113
  nextword=='products' (1)                                   0.060
  prevtag=='O' (1)                                                   3.389
  pos+prevtag=='NNP+O' (1)                                           1.725
  bias==True (1)                                                     0.955
  en-wordlist==False (1)                                             0.837
  label is 'B-ORGANIZATION' (1)                                      0.718
  prevpos=='DT' (1)                                                 -0.494
  nextpos=='nns' (1)                                                 0.365
  wordlen==5 (1)                                                    -0.351
  pos=='NNP' (1)                                                     0.174
  prefix3=='app' (1)                                                -0.126
  shape=='upcase' (1)                                               -0.084
  suffix3=='ple' (1)                                                -0.077
  prevword=='these' (1)                                              0.067
  prevtag=='O' (1)                                                           2.682
  label is 'B-LOCATION' (1)                                                 -2.038
  pos+prevtag=='NNP+O' (1)                                                   1.724
  shape=='upcase' (1)                                                        1.275
  prefix3=='app' (1)                                                         1.169
  bias==True (1)                                                             0.747
  prevpos=='DT' (1)                                                          0.745
  pos=='NNP' (1)                                                             0.616
  en-wordlist==False (1)                                                    -0.309
  nextpos=='nns' (1)                                                         0.151
  wordlen==5 (1)                                                             0.041
  ---------------------------------------------------------------------------------
  TOTAL:                                            10.730   8.171   7.095   6.802
  PROBS:                                             0.697   0.118   0.056   0.046

 

由此:1和2中在GPE识别中唯一的区别在于下面三行:

prevword==’of’ (1) 0.742
prevpos==’IN’ (1) 0.311
prevpos==’DT’ (1) -0.181

可见,1中
1中的Apple被识别为B-GPE,而2中的Apple被识别为O。

引用:

[1] http://www.nltk.org/book/ch07.html
[2] http://spark-public.s3.amazonaws.com/nlp/slides/Information_Extraction_and_Named_Entity_Recognition_v2.pdf
[3] http://www.mattshomepage.com/#/blog/feb2013/liftingthehood

 

https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149(博主视频教学主页)

 

 

 

 

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!