通过例子进阶学习C++(六)你真的能写出约瑟夫环么

旧街凉风 提交于 2020-01-17 10:07:20

本文是通过例子学习C++的第六篇,通过这个例子可以快速入门c++相关的语法。

1.问题描述

n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局;然后从出局的下一个人重新开始报数,数到第 m 个人,再让他出局......,如此反复直到所有人全部出局为止。

2.问题分析及用数组求解

约瑟夫环是经典的算法问题,如同“一千个读者就有一千个哈姆雷特”,该问题每个人都有不同的解答。常见的有:数组;单向循环链表;静态链表;双向链表;队列;递推公式 ......

首先简化问题,从s=1开始数,通过数组实现需要:

​ 数组 bool a[1000],可能会浪费了大量的存储空间;

​ 变量 t 从s=1开始数,指示当前数组的位置;

​ 变量 f 记录出局人数;

​ 变量 s 从1到m;

整个过程一个do-while循环即可实现,但理解起来却是非常“拗口”。

代码如下:

#include<iostream>
using namespace std;
int n,m,s,f,t;
bool a[1000];
int main()
{
    cin>>n>>m;      //共n人,从1开始数,数到m出局
    for (int i=1;i<=n;++i){
        a[i]=false;
    }

    t=0;//从数组a的a[1]开始...记录数组a的第t个位置 
    f=0;//记录出局人数 
    s=0;//从1数到m,然后再从1数到m... 
   do
   {
        ++t;
        if (t==n+1) t=1;    //数到最后一个后,将t指向第一个 
        if (a[t]==false) ++s;   //第t个位置上有人则报数
        if (s==m)       //当前报的数是m
        {
            s=0;        //计数器清零
            cout<<t<<" ";   //出局人的编号
            a[t]=true;      //设置该位置已出局 
            f++;        //出局的人数加一 
        }
    } while(f!=n);      //所有的人都出局为止
 return 0;
}

程序运行效果如下图:

3.数组方式求解改进

下面,我们将s调整为键盘输入,即从第s个人开始报数,实现代码如下:

#include<iostream>
using namespace std;
int n,m,s,f,t;
bool a[1000];
int main()
{
    cin>>n>>t>>m;       //共n人,从t开始数,数到m出局
    cout<<endl;
    for (int i=1;i<=n;++i){
        a[i]=false;
    }

    t = t -1;
    f=0;//记录出局人数 
    s=0;//从1数到m,然后再从1数到m... 
   do
   {
        ++t;
        if (t==n+1) t=1;    //数到最后一个后,将t指向第一个 
        if (a[t]==false) ++s;   //第t个位置上有人则报数
        if (s==m)       //当前报的数是m
        {
            s=0;        //计数器清零
            cout<<t<<" ";   //出局人的编号
            a[t]=true;      //设置该位置已出局 
            f++;        //出局的人数加一 
        }
    } while(f!=n);      //所有的人都出局为止
 return 0;
}

程序运行效果如下图:

4.静态链表实现约瑟夫环

静态链表,顾名思义就是用数组模拟链表。为了程序的可读性,特用一个函数表示约瑟夫环求解问题,调用的时候,只需要传入n,s,m即可。由于数组的长度n是动态生成的,故通过指针来生成数组。

实现代码如下:

#include<iostream>
using namespace std;
 
//约瑟夫环问题 
void Josephus(int n,int s, int m) 
{
    cout<<n<<" "<<s<<" "<<m<<endl;
    int i,j,k;
    int *next= new int[n];
    //初始化静态链表 
    for(i=0;i<n-1;++i){
        next[i] = i+1;
    } 
    next[n-1] = 0;
    
    //k初始化为s的前一个位置,数组下标从0开始
    if(s==1){
        k = n-1;
    }else{
        k = s-2;
    }
    
    for(i=1;i<=n;++i){
        //找到出局人的前驱 
        for(j=1;j<m;++j){
            k=next[k];
        }   
        cout<<next[k]+1<<" ";//数组下标从0开始,故需要+1 
        //数到m的人出列,删除该元素
        next[k] = next[next[k]]; 
    }
}
int main(){
    Josephus(9,2,5);
    return 0;
}

程序运行后效果如下:

5.总结

本文中通过数组、静态链表实现了约瑟夫环。数组方式实现,各个元素之间的“线性关系”未在数据结构中体现,需要通过变量t、f、s来分别指示当前数组元素的位置、出局人数、计数1-m直到所有元素都“出局”为止。类似的,通过队列实现,跟数组实现逻辑上差不多。区别在于数据结构不同,但算法一样。

静态链表方式实现,各个元素之间的“线性关系”通过next指示了,只需要k遍历即可,理解起来更加直观。类似的,通过单向循环链表、双向链表实现跟静态链表实现逻辑上差不多。区别在于数据结构不同,但算法一样。

至于通过递推公式实现,从“计算机”角度看,一般难以“想到”该方法。

通过该例子,可以学习:

  • 指针;
  • 函数定义、调用;
  • 通过优化求解约瑟夫环,加深问题的理解。

本文从构思到完成,可谓是耗费了大量的心血。

如果您阅读本文后哪怕有一丢丢收获,请不要吝啬你手中关注点赞的权力,谢谢!

另外,如果需要相关代码,请留言,可以提供完整源代码

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!