问题
I have been working on deployment of a custom estimator (tensorflow model). After training on ml-engine everything is Ok, but when use ml-engine predictions in batch model I could not get the key (or any id of the original input) as you know batch predictions is in distributed mode and "keys" helps to understand which predictions correspond. I found this post where solve this problem, but using a pre-made (canned) tensorflow model (census use case). How can adapt my custom model (tf.contrib.learn.Estimator()) in order to get "keys" in prediction? An example of my output file:
{"predicted": [0.04930919408798218, 0.05402487516403198, 0.059984803199768066, 0.017936021089553833]}
And my model function is as follows:
SEQ_LEN = 12
DEFAULTS = [[0.0] for x in range(0, SEQ_LEN)]
BATCH_SIZE = 32
TIMESERIES_COL = 'rawdata'
N_OUTPUTS = 4 # in each sequence, 1-8 are features, and 9-12 are labels
N_INPUTS = SEQ_LEN - N_OUTPUTS
LSTM_SIZE = 10 # number of hidden layers in each of the LSTM cells
LAMBDA_L2_REG = 0 # regularization coefficient
def simple_rnn(features, targets, mode):
# 0. Reformat input shape to become a sequence
x = tf.split(features[TIMESERIES_COL], N_INPUTS, 1)
#print 'x={}'.format(x)
# 1. configure the RNN
lstm_cell = tf.contrib.rnn.BasicLSTMCell(LSTM_SIZE, forget_bias=1.0)
outputs, _ = tf.contrib.rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# slice to keep only the last cell of the RNN
outputs = outputs[-1]
#print 'last outputs={}'.format(outputs)
# output is result of linear activation of last layer of RNN
w = tf.Variable(tf.random_normal([LSTM_SIZE, N_OUTPUTS]))
b = tf.Variable(tf.random_normal([N_OUTPUTS]))
predictions = tf.matmul(outputs, w) + b
# 2. loss function, training/eval ops
if mode == tf.contrib.learn.ModeKeys.TRAIN or mode == tf.contrib.learn.ModeKeys.EVAL:
l2_reg = tf.reduce_mean(tf.nn.l2_loss(w))
loss = tf.losses.mean_squared_error(targets, predictions)+LAMBDA_L2_REG*l2_reg
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
#learning_rate=0.01,
learning_rate = tf.train.exponential_decay(0.01, tf.contrib.framework.get_global_step(),500, 0.96, staircase=True),
optimizer="Adam",
clip_gradients=2.5)
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(targets, predictions)
}
else:
loss = None
train_op = None
eval_metric_ops = None
# 3. Create predictions
predictions_dict = {"predicted": predictions}
# 4. return ModelFnOps
return tf.contrib.learn.ModelFnOps(
mode=mode,
predictions=predictions_dict,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
I use python 2.7 and tensorflow 1.6. Thanks in advance!
回答1:
What you are looking for is forward_features. However, there is a bug in that function in which the model export didn't work correctly; the fix looks like it won't land until TF 1.8.
There is more info in this answer, including a potential workaround, repeated here for your convenience (taken from this code sample):
def forward_key_to_export(estimator):
estimator = tf.contrib.estimator.forward_features(estimator, KEY_COLUMN)
# return estimator
## This shouldn't be necessary (I've filed CL/187793590 to update extenders.py with this code)
config = estimator.config
def model_fn2(features, labels, mode):
estimatorSpec = estimator._call_model_fn(features, labels, mode, config=config)
if estimatorSpec.export_outputs:
for ekey in ['predict', 'serving_default']:
if (ekey in estimatorSpec.export_outputs and
isinstance(estimatorSpec.export_outputs[ekey],
tf.estimator.export.PredictOutput)):
estimatorSpec.export_outputs[ekey] = \
tf.estimator.export.PredictOutput(estimatorSpec.predictions)
return estimatorSpec
return tf.estimator.Estimator(model_fn=model_fn2, config=config)
##
To use it, you would do something like this:
estimator = build_estimator(...)
estimator = forward_key_to_export(estimator)
来源:https://stackoverflow.com/questions/49542369/how-to-get-keys-in-batch-predictions-with-ml-engine-using-a-custom-model