题目链接:https://vjudge.net/article/371?tdsourcetag=s_pcqq_aiomsg
题目:给定一个连通图,题目说,任意两个点至少有一条路线可以相互到达,
为保证任意两点有完全不同的路线(点可以相同,边不能相同)可以相互到达至少需要加几条边。
思路:tarjan缩点,之后重构图,找出度数为1的scc个数scc_cnt,这些点相互连接,答案可以得出是 (scc_cnt+1)/2。
两组样例:
n = 5 ,m = 4 | (1 2) (1 3) )(1 4) (1 5)
n = 8, m = 9 | (1 2) (1 4) (2 3) (3 4) (4 5) (5 6) (6 7) (5 8) (7 8 )
#include <iostream> #include <cstdio> #include <algorithm> using namespace std; const int N = (int)5e3+10; int head[N],dfn[N],low[N],scc_no[N],s[N],du[N]; int n,m,tot,tim,scc,top; struct node{ int to; int nxt; }e[N << 2]; inline void add(int u,int v){ e[tot].to = v; e[tot].nxt = head[u]; head[u] = tot++; } void tarjan(int now,int pre){ dfn[now] = low[now] = ++tim; s[top++] = now; //这里有情况,两点之间可能>1条路直接连接 //所以,需要处理下边的重复问题 int to,pre_cnt = 0; for(int o = head[now]; ~o; o = e[o].nxt){ to = e[o].to; //只是一条无向边,处理一下 if(to == pre && pre_cnt == 0){ pre_cnt = 1; continue; } if(!dfn[to]){ tarjan(to,now); low[now] = min(low[now],low[to]); } else low[now] = min(low[now],dfn[to]); } if(dfn[now] == low[now]){ ++scc; int x; do{ x = s[--top]; scc_no[x] = scc; }while(now != x); } } void rebuild(){ int to; for(int now = 1; now <= n; ++now){ for(int o = head[now]; ~o; o = e[o].nxt){ to = e[o].to; if(scc_no[now] != scc_no[to]){ ++du[scc_no[now]]; ++du[scc_no[to]]; } } } } void solve(){ int p = 0; // cout << scc << endl; //度数为什么是2的,因为是无向图,其实除2就是度数为1了 for(int i = 1; i <= scc; ++i) if(du[i] == 2) ++p; // cout << p << endl; printf("%d\n",(p+1)/2); } int main(){ int u,v; scanf("%d%d",&n,&m); for(int i = 1;i <= n; ++i) head[i] = -1; for(int i = 0; i < m; ++i){ scanf("%d%d",&u,&v); add(u,v); add(v,u); } tarjan(1,1); rebuild(); solve(); return 0; }
来源:https://www.cnblogs.com/SSummerZzz/p/12199411.html