废话不多说,直接上代码,模型保存的代码如下:
# coding: utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
if __name__ == '__main__':
# 读入数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# x为训练图像的占位符、y_为训练图像标签的占位符
x = tf.placeholder(tf.float32, [None, 784], name='x')
y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
# 将单张图片从784维向量重新还原为28x28的矩阵图片
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 第一层卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 全连接层,输出为1024维的向量
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 使用Dropout,keep_prob是一个占位符,训练时为0.5,测试时为1
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 把1024维的向量转换成10维,对应10个类别
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# 我们不采用先Softmax再计算交叉熵的方法,而是直接用tf.nn.softmax_cross_entropy_with_logits直接计算
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# 同样定义train_step
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 定义测试的准确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')
# 创建Session和变量初始化
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=2) # 建立保存实例
# 训练20000步
for i in range(500):
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print(i)
saver.save(sess, 'model', global_step=500) # 用实例进行模型的保存
新建一个.py文件进行模型的重载进行预测
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('model-500.meta') # 加载模型图
new_saver.restore(sess, tf.train.latest_checkpoint("./")) # 加载模型里面参与计算的变量
graph = tf.get_default_graph() # 建立默认图实例对象
x1 = graph.get_tensor_by_name('x:0') # 获取结构图变量
y_1 = graph.get_tensor_by_name('y_:0')
keep_prob = graph.get_tensor_by_name('keep_prob:0')
accu = graph.get_tensor_by_name('accuracy:0')
a = mnist.test.images
b = mnist.test.labels
feed_dict = {x1: a, y_1: b, keep_prob: 1.0}
print(sess.run(accu, feed_dict)) # 赋值计算
来源:CSDN
作者:机器视觉深度学习超人
链接:https://blog.csdn.net/my_name_is_learn/article/details/103850603