目录
- 目标
- JAVA NIO
- Buffer缓冲区
- Buffer工作原理
- Buffer基本使用
- ByteBuffer内存类型
- Channel通道
- SocketChannel
- ServerSocketChannel
- Selector选择器
- NIO对比BIO
- 小结
目标
了解NIO、熟悉Buffer API、channel、selector,NIO+多线程
JAVA NIO
NIO:new IO,非阻塞IO。
目的是为了解决替换掉IO网络编程的相关API。
Buffer缓冲区
内存块中包含了NIO Buffer对象,对象提供了一组方法,可以操作这个内存块。
比Input和output操作更方便更容易操作,写入和读取需要手动记录和跟进。
Buffer工作原理
更方便的操作,是因为里面记录了每一个操作点,同时还提供了数组操作的封装。
主要关注API的使用。
Buffer基本使用
注意读写的转换,读和写模式下参数含义不一样。
put();写 flip();转换
public static void main(String[] args) {
// 构建一个byte字节缓冲区,容量是4,堆内的内存
ByteBuffer byteBuffer = ByteBuffer.allocate(4);
// 默认写入模式,查看三个重要的指标
System.out.println(String.format("初始化:capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
byteBuffer.position(), byteBuffer.limit()));
// 写入2字节的数据
byteBuffer.put((byte) 1);
byteBuffer.put((byte) 2);
byteBuffer.put((byte) 3);
// 再看数据
System.out.println(String.format("写入3字节后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
byteBuffer.position(), byteBuffer.limit()));
// 转换为读取模式(不调用flip方法,也是可以读取数据的,但是position记录读取的位置不对)
System.out.println("#######开始读取");
byteBuffer.flip();
byte a = byteBuffer.get();
System.out.println(a);
byte b = byteBuffer.get();
System.out.println(b);
System.out.println(String.format("读取2字节数据后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
byteBuffer.position(), byteBuffer.limit()));
// 继续写入3字节,此时读模式下,limit=3,position=2.继续写入只能覆盖写入一条数据
// clear()方法清除整个缓冲区。compact()方法仅清除已阅读的数据。转为写入模式
byteBuffer.compact(); // buffer : 1 , 3
byteBuffer.put((byte) 3);
byteBuffer.put((byte) 4);
byteBuffer.put((byte) 5);
System.out.println(String.format("最终的情况,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
byteBuffer.position(), byteBuffer.limit()));
// rewind() 重置position为0
// mark() 标记position的位置
// reset() 重置position为上次mark()标记的位置
}
ByteBuffer内存类型
少一次拷贝:将数据拷贝到堆外内存,在进行写入,垃圾回收机制,移动java对象内存,防止和Gc冲突。
堆外内存,GC不会对其管理,需要收到回收。
基本使用
//直接申请堆外内存
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4);
Channel通道
Buffer就是给Channel来操作的。
Channe即可以创建连接和读取数据,全部基于Channel对象。可以进行非阻塞操作。
SocketChannel和ServerSocketChannel对应Socket和ServerSocket的改进。
SocketChannel
替代net+io包,一套API操作,很方便。
ServerSocketChannel
非阻塞模式。
基本使用
注意在非阻塞情况下,有可能返回null、没有读取到数据或是否写完了数据。
//ServerSocketChannel
public static void main(String[] args) throws Exception {
// 创建网络服务端
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
System.out.println("启动成功");
while (true) {
SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
// tcp请求 读取/响应
if (socketChannel != null) {
System.out.println("收到新连接 : " + socketChannel.getRemoteAddress());
socketChannel.configureBlocking(false); // 默认是阻塞的,一定要设置为非阻塞
try {
ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
// 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
if (requestBuffer.position() > 0) break;
}
if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
requestBuffer.flip();
byte[] content = new byte[requestBuffer.limit()];
requestBuffer.get(content);
System.out.println(new String(content));
System.out.println("收到数据,来自:"+ socketChannel.getRemoteAddress());
// 响应结果 200
String response = "HTTP/1.1 200 OK\r\n" +
"Content-Length: 11\r\n\r\n" +
"Hello World";
ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
while (buffer.hasRemaining()) {
socketChannel.write(buffer);// 非阻塞
}
} catch (IOException e) {
e.printStackTrace();
}
}
}
// 用到了非阻塞的API, 在设计上,和BIO可以有很大的不同.继续改进
}
//客户端
public class NIOClient {
public static void main(String[] args) throws Exception {
SocketChannel socketChannel = SocketChannel.open();
socketChannel.configureBlocking(false);
socketChannel.connect(new InetSocketAddress("127.0.0.1", 8080));
while (!socketChannel.finishConnect()) {
// 没连接上,则一直等待
Thread.yield();
}
Scanner scanner = new Scanner(System.in);
System.out.println("请输入:");
// 发送内容
String msg = scanner.nextLine();
ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
while (buffer.hasRemaining()) {
socketChannel.write(buffer);
}
// 读取响应
System.out.println("收到服务端响应:");
ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
// 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
if (requestBuffer.position() > 0) break;
}
requestBuffer.flip();
byte[] content = new byte[requestBuffer.limit()];
requestBuffer.get(content);
System.out.println(new String(content));
scanner.close();
socketChannel.close();
}
}
问题:
此处没有数据会进入死循环状态,会导致服务端线程阻塞,只有读取完数据才能继续执行。类似于BIO的阻塞读取数据。
while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
// 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
if (requestBuffer.position() > 0) break;
}
改进版本
改进思想:利用非阻塞特性,除掉阻塞代码,而不是使用多线程技术。
存储所有连接,有连接就去处理连接,没有连接就去处理数据,通过while轮训检查数据。
public class NIOServer1 {
/**
* 已经建立连接的集合
*/
private static ArrayList<SocketChannel> channels = new ArrayList<>();
public static void main(String[] args) throws Exception {
// 创建网络服务端
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
System.out.println("启动成功");
while (true) {
SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
// tcp请求 读取/响应
if (socketChannel != null) {
System.out.println("收到新连接 : " + socketChannel.getRemoteAddress());
socketChannel.configureBlocking(false); // 默认是阻塞的,一定要设置为非阻塞
channels.add(socketChannel);
} else {
// 没有新连接的情况下,就去处理现有连接的数据,处理完的就删除掉
Iterator<SocketChannel> iterator = channels.iterator();
while (iterator.hasNext()) {
SocketChannel ch = iterator.next();
try {
ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
if (ch.read(requestBuffer) == 0) {
// 等于0,代表这个通道没有数据需要处理,那就待会再处理
continue;
}
while (ch.isOpen() && ch.read(requestBuffer) != -1) {
// 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
if (requestBuffer.position() > 0) break;
}
if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
requestBuffer.flip();
byte[] content = new byte[requestBuffer.limit()];
requestBuffer.get(content);
System.out.println(new String(content));
System.out.println("收到数据,来自:" + ch.getRemoteAddress());
// 响应结果 200
String response = "HTTP/1.1 200 OK\r\n" +
"Content-Length: 11\r\n\r\n" +
"Hello World";
ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
while (buffer.hasRemaining()) {
ch.write(buffer);
}
iterator.remove();
} catch (IOException e) {
e.printStackTrace();
iterator.remove();
}
}
}
}
// 用到了非阻塞的API, 再设计上,和BIO可以有很大的不同
// 问题: 轮询通道的方式,低效,浪费CPU
}
}
Selector选择器
之前线程监听的是channel,通过channel来读取或者写入数据,而Selector监听的是事件,所以是事件监听机制。
改进代码示例
改进思想:
- 在channel上使用Selector注册监听。主要是接收连接的监听。
- 轮训接收到的监听,有监听过来,则取出,然后在建立对象,注册数据的监听。不再轮训。
- 有数据读则读取数据的监听事件。
/**
* 结合Selector实现的非阻塞服务端(放弃对channel的轮询,借助消息通知机制)
*/
public class NIOServerV2 {
public static void main(String[] args) throws Exception {
// 1. 创建网络服务端ServerSocketChannel
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
// 2. 构建一个Selector选择器,并且将channel注册上去
Selector selector = Selector.open();
SelectionKey selectionKey = serverSocketChannel.register(selector, 0, serverSocketChannel);// 将serverSocketChannel注册到selector
selectionKey.interestOps(SelectionKey.OP_ACCEPT); // 对serverSocketChannel上面的accept事件感兴趣(serverSocketChannel只能支持accept操作)
// 3. 绑定端口
serverSocketChannel.socket().bind(new InetSocketAddress(8080));
System.out.println("启动成功");
//轮训是否有事件
while (true) {
// 不再轮询通道,改用下面轮询事件的方式.select方法有阻塞效果,直到有事件通知才会有返回
selector.select();
// 获取事件
Set<SelectionKey> selectionKeys = selector.selectedKeys();
// 遍历查询结果e
Iterator<SelectionKey> iter = selectionKeys.iterator();
while (iter.hasNext()) {
// 被封装的查询结果
SelectionKey key = iter.next();
iter.remove();
// 关注 Read 和 Accept两个事件
if (key.isAcceptable()) {
ServerSocketChannel server = (ServerSocketChannel) key.attachment();
// 将拿到的客户端连接通道,注册到selector上面
SocketChannel clientSocketChannel = server.accept(); // mainReactor 轮询accept
clientSocketChannel.configureBlocking(false);
clientSocketChannel.register(selector, SelectionKey.OP_READ, clientSocketChannel);
System.out.println("收到新连接 : " + clientSocketChannel.getRemoteAddress());
}
if (key.isReadable()) {
SocketChannel socketChannel = (SocketChannel) key.attachment();
try {
ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
// 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
if (requestBuffer.position() > 0) break;
}
if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
requestBuffer.flip();
byte[] content = new byte[requestBuffer.limit()];
requestBuffer.get(content);
System.out.println(new String(content));
System.out.println("收到数据,来自:" + socketChannel.getRemoteAddress());
// TODO 业务操作 数据库 接口调用等等
// 响应结果 200
String response = "HTTP/1.1 200 OK\r\n" +
"Content-Length: 11\r\n\r\n" +
"Hello World";
ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
while (buffer.hasRemaining()) {
socketChannel.write(buffer);
}
} catch (IOException e) {
// e.printStackTrace();
key.cancel(); // 取消事件订阅
}
}
}
selector.selectNow();
}
// 问题: 此处一个selector监听所有事件,一个线程处理所有请求事件. 会成为瓶颈! 要有多线程的运用
}
}
NIO对比BIO
NIO:使用单个线程处理多个连接,主要利用事件监听机制,线程利用率会更高,是性能更强大。
NIO与多线程结合的改进方案
可以代表Java开发中NIO与多线程结合的一种标准做法。多路复用:一个线程通过状态的能处理多个线程的请求,达到复用的目的。
实现方案是基于Reactor线程模型进行的调整。
左图:单Reactor模式,实质将底层网络处理和应用层逻辑处理进行分离,提高处理效率,服务器多核特点也得到了利用。
一个线程是Reactor线程:主要负责网络数据接收和连接处理。
ThreadPool线程池:处理请求的后续逻辑。
右图:多Reactor模式(Reactor主要处理网络连接的),将Reactor分成多种。
mainReactor:处理网络连接。
subReactor:处理数据读取和发送。
ThreadPool线程池:处理请求的后续逻辑。
区别在于多了一个Reactor,在网络事件上多了一种分发。
代码示例
/**
* NIO selector 多路复用reactor线程模型
*/
public class NIOServerV3 {
/** 处理业务操作的线程 */
private static ExecutorService workPool = Executors.newCachedThreadPool();
/**
* 封装了selector.select()等事件轮询的代码
*/
abstract class ReactorThread extends Thread {
Selector selector;
LinkedBlockingQueue<Runnable> taskQueue = new LinkedBlockingQueue<>();
/**
* Selector监听到有事件后,调用这个方法
*/
public abstract void handler(SelectableChannel channel) throws Exception;
private ReactorThread() throws IOException {
selector = Selector.open();
}
volatile boolean running = false;
@Override
public void run() {
// 轮询Selector事件
while (running) {
try {
// 执行队列中的任务
Runnable task;
while ((task = taskQueue.poll()) != null) {
task.run();
}
selector.select(1000);
// 获取查询结果
Set<SelectionKey> selected = selector.selectedKeys();
// 遍历查询结果
Iterator<SelectionKey> iter = selected.iterator();
while (iter.hasNext()) {
// 被封装的查询结果
SelectionKey key = iter.next();
iter.remove();
int readyOps = key.readyOps();
// 关注 Read 和 Accept两个事件
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
try {
SelectableChannel channel = (SelectableChannel) key.attachment();
channel.configureBlocking(false);
handler(channel);
if (!channel.isOpen()) {
key.cancel(); // 如果关闭了,就取消这个KEY的订阅
}
} catch (Exception ex) {
key.cancel(); // 如果有异常,就取消这个KEY的订阅
}
}
}
selector.selectNow();
} catch (IOException e) {
e.printStackTrace();
}
}
}
private SelectionKey register(SelectableChannel channel) throws Exception {
// 为什么register要以任务提交的形式,让reactor线程去处理?
// 因为线程在执行channel注册到selector的过程中,会和调用selector.select()方法的线程争用同一把锁
// 而select()方法实在eventLoop中通过while循环调用的,争抢的可能性很高,为了让register能更快的执行,就放到同一个线程来处理
FutureTask<SelectionKey> futureTask = new FutureTask<>(() -> channel.register(selector, 0, channel));
taskQueue.add(futureTask);
return futureTask.get();
}
private void doStart() {
if (!running) {
running = true;
start();
}
}
}
private ServerSocketChannel serverSocketChannel;
// 1、创建多个线程 - accept处理reactor线程 (accept线程)
private ReactorThread[] mainReactorThreads = new ReactorThread[1];
// 2、创建多个线程 - io处理reactor线程 (I/O线程)
private ReactorThread[] subReactorThreads = new ReactorThread[8];
/**
* 初始化线程组
*/
private void newGroup() throws IOException {
// 创建IO线程,负责处理客户端连接以后socketChannel的IO读写
for (int i = 0; i < subReactorThreads.length; i++) {
subReactorThreads[i] = new ReactorThread() {
@Override
public void handler(SelectableChannel channel) throws IOException {
// work线程只负责处理IO处理,不处理accept事件
SocketChannel ch = (SocketChannel) channel;
ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
while (ch.isOpen() && ch.read(requestBuffer) != -1) {
// 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
if (requestBuffer.position() > 0) break;
}
if (requestBuffer.position() == 0) return; // 如果没数据了, 则不继续后面的处理
requestBuffer.flip();
byte[] content = new byte[requestBuffer.limit()];
requestBuffer.get(content);
System.out.println(new String(content));
System.out.println(Thread.currentThread().getName() + "收到数据,来自:" + ch.getRemoteAddress());
// TODO 业务操作 数据库、接口...
workPool.submit(() -> {
});
// 响应结果 200
String response = "HTTP/1.1 200 OK\r\n" +
"Content-Length: 11\r\n\r\n" +
"Hello World";
ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
while (buffer.hasRemaining()) {
ch.write(buffer);
}
}
};
}
// 创建mainReactor线程, 只负责处理serverSocketChannel
for (int i = 0; i < mainReactorThreads.length; i++) {
mainReactorThreads[i] = new ReactorThread() {
AtomicInteger incr = new AtomicInteger(0);
@Override
public void handler(SelectableChannel channel) throws Exception {
// 只做请求分发,不做具体的数据读取
ServerSocketChannel ch = (ServerSocketChannel) channel;
SocketChannel socketChannel = ch.accept();
socketChannel.configureBlocking(false);
// 收到连接建立的通知之后,分发给I/O线程继续去读取数据
int index = incr.getAndIncrement() % subReactorThreads.length;
ReactorThread workEventLoop = subReactorThreads[index];
workEventLoop.doStart();
SelectionKey selectionKey = workEventLoop.register(socketChannel);
selectionKey.interestOps(SelectionKey.OP_READ);
System.out.println(Thread.currentThread().getName() + "收到新连接 : " + socketChannel.getRemoteAddress());
}
};
}
}
/**
* 初始化channel,并且绑定一个eventLoop线程
*
* @throws IOException IO异常
*/
private void initAndRegister() throws Exception {
// 1、 创建ServerSocketChannel
serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.configureBlocking(false);
// 2、 将serverSocketChannel注册到selector
int index = new Random().nextInt(mainReactorThreads.length);
mainReactorThreads[index].doStart();
SelectionKey selectionKey = mainReactorThreads[index].register(serverSocketChannel);
selectionKey.interestOps(SelectionKey.OP_ACCEPT);
}
/**
* 绑定端口
*
* @throws IOException IO异常
*/
private void bind() throws IOException {
// 1、 正式绑定端口,对外服务
serverSocketChannel.bind(new InetSocketAddress(8080));
System.out.println("启动完成,端口8080");
}
public static void main(String[] args) throws Exception {
NIOServerV3 nioServerV3 = new NIOServerV3();
nioServerV3.newGroup(); // 1、 创建main和sub两组线程
nioServerV3.initAndRegister(); // 2、 创建serverSocketChannel,注册到mainReactor线程上的selector上
nioServerV3.bind(); // 3、 为serverSocketChannel绑定端口
}
}
实现代码很长,比较难以理解,结合个人理解,已比较通俗易懂的方式总结一下,方便以后查阅和记忆。
角色:boss(mainReactor) 员工A(subReactor) 员工B(subReactor)
业务场景:boss一般对外负责接业务需求,然后交由员工来处理。
客户:我有一个需求,希望你们来帮我实现。(客户端希望建立一个连接)
boss:可以,很高兴为你服务。(mainReactor)接收请求连接。
boss:(翻牌,选取员工A)小A,你过来,有一个需求交给你做,这是客户的联系方式158XXXX,你重点关注他对报价的期望。(选取subReactor线程,将建立的连接交由其处理,并注册对应的感兴趣事件)。
小A:好的,老板,拿到联系方式,开始和客户建立沟通,并关注客户报价需求。(subReactor循环监听channl注册的事件)。
小A的自白:客户想让我开发一个网站,我又不是搞网站开发的。交给开发组去做吧。(将具体的业务交给业务线程池来完成)。
小结
来源:CSDN
作者:阿莫西邻
链接:https://blog.csdn.net/xiaofbing/article/details/103754401