模糊理论
······首先,人们在认识模糊性时,是允许有主观性的,也就是说每个人对模糊事物的界限不完全一样,承认一定的主观性是认识模糊性的一个特点。例如,我们让100个人说出“年轻人”的年龄范围,那么我们将得到100个不同的答案。尽管如此,当我们用模糊统计的方法进行分析时,年轻人的年龄界限分布又具有一定的规律性。
······其次,模糊性是精确性的对立面,但不能消极地理解模糊性代表的是落后的生产力,恰恰相反,我们在处理客观事物时,经常借助于模糊性。例如,在一个有许多人的房间里,找一位“年老的高个子男人”,这是不难办到的。这里所说的“年老”、“高个子”都是模糊概念,然而我们只要将这些模糊概念经过头脑的分析判断,很快就可以在人群中找到此人。如果我们要求用计算机查询,那么就要把所有人的年龄,身高的具体数据输入计算机,然后我们才可以从人群中找这样的人。
······最后,人们对模糊性的认识往往同随机性混淆起来,其实它们之间有着根本的区别。随机性是其本身具有明确的含义,只是由于发生的条件不充分,而使得在条件与事件之间不能出现确定的因果关系,从而事件的出现与否表现出一种不确定性。而事物的模糊性是指我们要处理的事物的概念本身就是模糊的,即一个对象是否符合这个概念难以确定,也就是由于概念外延模糊而带来的不确定性。
模糊控制
模糊控制的基本思想
把人类专家对特定的被控对象或过程的控制策略总结成一系列以“IF(条件)THEN(作用)”形式表示的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程。控制作用集为一组条件语句,状态语句和控制作用均为一组被量化了的模糊语言集,如“正大”、“负大”、“正小”、“负小”、零等。
应用领域
事实上,模糊理论应用最有效,最广泛的领域就是模糊控制,模糊控制在各种领域出人意料的解决了传统控制理论无法解决的或难以解决的问题,并取得了一些令人信服的成效。
模糊控制的几个研究方向:
·模糊控制的稳定性研究
·模糊模型及辩识
·模糊最优控制
·模糊自组织控制
·模糊自适应控制
·多模态模糊控制
模糊控制的缺陷
信息简单的模糊处理将导致系统的控制精度降低和动态品质变差。若要提高精度则必然增加量化级数,从而导致规则搜索范围扩大,降低决策速度,甚至不能实时控制。模糊控制的设计尚缺乏系统性,无法定义控制目标。控制规则的选择,论域的选择,模糊集的定义,量化因子的选取多采用试凑发,这对复杂系统的控制是难以奏效的。
精神
模糊理论是以模糊集合(fuzzy set)为基础,其基本精神是接受模糊性现象存在的事实,而以处理概念模糊不确定的事物为其研究目标,并积极的将其严密的量化成计算机可以处理的讯息,不主张用繁杂的数学分析即模型来解决模型
理论应用
一、工程科技方面
1、型样识别:文字识别、指纹识别、手写字体辨识、影像辨识、语音辨识
2、控制工程:机器人控制、汽车控制、家电控制、工业仪表控制、电力控制
3、信号及资讯处理:影像处理、语音处理、资料整理、数据库管理
4、人工智能及专家系统:故障诊断、自然语言处理、自动翻译、地震预测、工业设计
5、环保:废水处理、净水处理厂工程、空气污染检验、空气品质监控
6、其他:建筑结构分析、化工制程控制
二、 教育、社会及人文科学方面
1、教育:教学成果评量、心理测验、性向测验、计算机辅助教学
2、心理学:心理分析、性向测验
3、决策决定:决策支援、决策分析、多目标评价、综合评价、风险分析
研究领域
模糊理论是指用到了模糊集合的基本概念或连续隶属度函数的理论。根据下图可将模糊理论进行大致的分类。主要有五个分支:
主要研究领域
(1)模糊数学,它用模糊集合取代经典集合从而扩展了经典数学中的概念;
(2)模糊逻辑与人工智能,它引入了经典逻辑学中的近似推理,且在模糊信息和近似推理的基础上开发了专家系统;
(3)模糊系统,它包含了信号处理和通信中的模糊控制和模糊方法;
(4)不确定性和信息,它用于分析各种不确定性;
(5)模糊决策,它用软约束来考虑优化问题。
当然,这五个分支并不是完全独立的,他们之间有紧密的联系。
例如,模糊控制就会用到模糊数学和模糊逻辑中的概念。从实际应用的观点来看,模糊理论的应用大部分集中在模糊系统上,尤其集中在模糊控制上。也有一些模糊专家系统应用于医疗诊断和决策支持。由于模糊理论从理论和实践的角度看仍然是新生事物,所以我们期望,随着模糊领域的成熟,将会出现更多可靠的实际应用。
控制基础
模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。模糊控制器(Fuzzy Controller,即FC)获得巨大成功的主要原因在于它具有如下一些突出特点:
模糊控制是一种基于规则的控制。它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。
由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取、动态特性不易掌握或变化非常显著的对象非常适用。
基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统的语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。
模糊控制算法是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。
模糊控制系统的鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,尤其适合于非线性、时变及纯滞后系统的控制。
内容
模糊控制理论主要研究内容:模糊控制稳定性,模糊模型的辨识,模糊最优控制,模糊自适应控制,与其他控制结合等。如将智能控制与传统控制方法相结合,产生了模糊变结构控制(FVSC),自适应模糊控制(AFC),自适应神经网络控制(ANNC),神经网络变结构控制(NNVAC),神经网络预测控制(ANNPC),模糊预测控制(FPC),专家模糊控制(EFC),模糊神经网络控制(FNNC),专家神经网络控制(ENNC)等方法。
来源:CSDN
作者:JiaLieCheng
链接:https://blog.csdn.net/weixin_43209097/article/details/103875064