Given a target sum and a set of integers, find the closest subset of numbers that add to that target

元气小坏坏 提交于 2019-11-27 12:22:38

问题


I have a set of integers M and a target sum k. I want to find the subset of M that when added together is the closest to k without going over.

For example:

M = {1, 3, 5, 5, 14}

k = 12

answer = {1, 5, 5}

because 1 + 5 + 5 = 11 and there is no way to make 12.

I have the additional constraint that the subset can contain at most 4 elements.

In my application, the size of |M| can be large (on the order of thousands of elements). If it is not possible to find the optimal answer in a reasonable time, I am interested in solutions that at least give a "good" answer.

Right now I am solving this problem by generating 10,000 random subsets and selecting the closest one, which works better than one might expect but is slow. I'm not sure how far from optimal this actually is, but any insight on that would be interesting to me as well.


回答1:


Since you have a limit on the number of items that you can pick, you can do it with a reasonably straightforward algorithm.

The algorithm produces the possible sums in "generations". Each element of a generation consists of a number representing the sum, and a N-tuple of indexes in M that were used to build that sum.

Generation zero is empty; generation X+1 is produced by walking the generation X, and adding the elements of M to each value of that generation, and recording their sum for the next generation X+1.

Before computing the sum, check its N-tuple for the presence of the index of the number that you are about to add. If it's there, skip the number. Next, check the sum: if it is already present among the X+1 sums, ignore it; otherwise, record the new sum, along with the new N-tuple of indexes (append the index of the number that you added to the N-tuple from the generation X).

Here is how this would work for your inputs:

Generation 0: empty

Generation 1:

 1 - {0}
 3 - {1}
 5 - {2}
14 - {4}

Generation 2:

 4 - {0, 1}
 6 - {0, 2}
 8 - {1, 2}
10 - {2, 3}
15 - {0, 4}
17 - {1, 4}
19 - {2, 4}

Generation 3:

 9 - {0, 1, 2}
11 - {0, 2, 3}
13 - {1, 2, 3}
18 - {0, 1, 4}
20 - {0, 2, 4}
22 - {1, 2, 4}
24 - {2, 3, 4}

Generation 4:

14 - {0, 1, 2, 3}
23 - {0, 1, 2, 4}
25 - {0, 2, 3, 4}
27 - {1, 2, 3, 4}

You can now search through the four generations for a number that is closest to your target number k.




回答2:


If the target sum k is not too large, look at http://en.wikipedia.org/wiki/Subset_sum_problem#Pseudo-polynomial_time_dynamic_programming_solution - you can use this to create a bitmap which tells you which numbers can be produced using your subset. Then just pick the closest possible number to k in the bitmap.




回答3:


Split the problem into 4 parts:

  • Sum containing exactly 1 element

    Simply loop through and find the highest value not larger than the target.

  • Sum containing exactly 2 elements

    Use a double for-loop to find the largest sum not larger than the target.

  • Sum containing exactly 3 elements (similar to 3SUM)

    Sort the elements

    Use a double for-loop and do a binary search for the target minus the two values, looking for smaller values to find the largest sum not larger than the target.

  • Sum containing exactly 4 elements

    Sort the elements (already done)

    Use a double for-loop to generate all sums of 2 elements.

    Now, for each such sum, do a binary search on the sums for the target, looking for smaller values until we find one that doesn't contain either value which this sum is made up of.

    See this for code using this approach for a similar problem (the exact sum).

Average case running time (?) = O(n + n^2 + n^2 log n + n^2 log n) = O(n^2 log n).

Determining the running time of the last problem is somewhat difficult, it may be as bad as O(n^4 log n) in the worst case, as you may end up looking through most of them before you find one that fits, but this should rarely happen, and, within the same run, some should take less time, thus the overall running time may be less.



来源:https://stackoverflow.com/questions/19572043/given-a-target-sum-and-a-set-of-integers-find-the-closest-subset-of-numbers-tha

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!