重积分
重积分的性质与计算
习题:
\(\iiint\limits_{\Omega}\frac{dxdydz}{(x+y+z)^{3}}\)其中\(\Omega\)为长方体\([1,2]\times[1,2]\times[1,2]\)
重积分的变量代换
柱面坐标代换
\[ \left\{ \begin{aligned} x & = & r\cos(\theta) \\ y & = & r\sin(\theta) \\ z & = & z \end{aligned} \right. \]
球面坐标代换
\[ \left\{
\begin{aligned}
x & = & r\sin(\varphi)\cos(\theta) \\
y & = & r\sin(\varphi)\sin(\theta) \\
z & = & r\cos(\varphi)
\end{aligned}
\right.
\]
习题:
\[\iint\limits_{D}sin(\pi\sqrt{x^{2}+y^{2}})dxdy \quad D=\{(x,y)|x^{2}+y^{2}\leq 1 \}\]
反常重积分
Poisson积分:
\(\int_{0}^{\infty}e^{-x^2}dx=\frac{\sqrt{\pi}}{2}\)
利用\(\iint\limits_{R^2}e^{-(x^{2}+y^{2})}dxdy\)
来源:https://www.cnblogs.com/zonghanli/p/12159500.html