问题
I am trying to use sklearn.mixture.GaussianMixture for classification of pixels in an hyper-spectral image. There are 15 classes (1-15). I tried using the method http://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html. In here the mean is initialize with means_init,I also tried this but my accuracy is poor (about 10%). I also tried to change type of covariance, threshold, maximum iterations and number of initialization but the results are same.
Am I doing correct? Please provide inputs.
import numpy as np
from sklearn.mixture import GaussianMixture
import scipy.io as sio
from sklearn.model_selection import train_test_split
uh_data =sio.loadmat('/Net/hico/data/users/nikhil/contest_uh_casi.mat')
data = uh_data['contest_uh_casi']
uh_labels = sio.loadmat('/Net/hico/data/users/nikhil/contest_gt_tr.mat')
labels = uh_labels['contest_gt_tr']
reshaped_data = np.reshape(data,(data.shape[0]*data.shape[1],data.shape[2]))
print 'reshaped data :',reshaped_data.shape
reshaped_label = np.reshape(labels,(labels.shape[0]*labels.shape[1],-1))
print 'reshaped label :',reshaped_label.shape
con_data = np.hstack((reshaped_data,reshaped_label))
pre_data = con_data[con_data[:,144] > 0]
total_data = pre_data[:,0:144]
total_label = pre_data[:,144]
train_data, test_data, train_label, test_label = train_test_split(total_data, total_label, test_size=0.30, random_state=42)
classifier = GaussianMixture(n_components = 15 ,covariance_type='diag',max_iter=100,random_state = 42,tol=0.1,n_init = 1)
classifier.means_init = np.array([train_data[train_label == i].mean(axis=0)
for i in range(1,16)])
classifier.fit(train_data)
pred_lab_train = classifier.predict(train_data)
train_accuracy = np.mean(pred_lab_train.ravel() == train_label.ravel())*100
print 'train accuracy:',train_accuracy
pred_lab_test = classifier.predict(test_data)
test_accuracy = np.mean(pred_lab_test.ravel()==test_label.ravel())*100
print 'test accuracy:',test_accuracy
My data has 66485 pixels and 144 features each. I also tried to do after applying some feature reduction techniques like PCA, LDA, KPCA etc, but the results are still the same.
回答1:
Gaussian Mixture is not a classifier. It is a density estimation method, and expecting that its components will magically align with your classes is not a good idea. You should try out actual supervised techniques, since you clearly do have access to labels. Scikit-learn offers lots of these, including Random Forest, KNN, SVM, ... pick your favourite. GMM simply tries to fit mixture of Gaussians into your data, but there is nothing forcing it to place them according to the labeling (which is not even provided in the fit call). From time to time this will work - but only for trivial problems, where classes are so well separated that even Naive Bayes would work, in general however it is simply invalid tool for the problem.
回答2:
GMM is not a classifier, but generative model. You can use it to a classification problem by applying Bayes theorem. It's not true that classification based on GMM works only for trivial problems. However it's based on mixture of Gauss components, so fits the best problems with high level features.
Your code incorrectly use GMM as classifier. You should use GMM as a posterior distribution, one GMM per each class.
来源:https://stackoverflow.com/questions/44852977/multiclass-classification-using-gaussian-mixture-models-with-scikit-learn