Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes5
and1
is3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes5
and4
is5
, since a node can be a descendant of itself according to the LCA definition.
Note:
- All of the nodes' values will be unique.
- p and q are different and both values will exist in the binary tree.
解题思路一:
可以分别使用两个数组来保存从根节点到给定的两个节点的路径值,然后再从路径中找出最后一个相同的路径,即为这两个节点的最小公共祖先节点。代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
vector<TreeNode*> pArry;
vector<TreeNode*> qArry;
vector<TreeNode*> tmp;
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(NULL == root)
{
return root;
}
find(root, p, q);
int i;
for(i = 0; i < pArry.size()&& i < qArry.size(); i ++)
{
if(pArry[i] == qArry[i])
continue;
else
break;
}
return pArry[i-1];
}
void find(TreeNode* root, TreeNode* p, TreeNode* q)
{
if(NULL == root)
return;
f (root == p || root == q)
return root;
tmp.push_back(root);
if(root == p)
{
for(int i = 0; i < tmp.size(); i++)
{
pArry.push_back(tmp[i]);
}
}
if(root == q)
{
for(int i = 0; i < tmp.size(); i++)
{
qArry.push_back(tmp[i]);
}
}
if(root->left != NULL)
{
find(root->left, p, q);
}
if(root->right != NULL)
{
find(root->right, p, q);
}
tmp.pop_back();
}
};
解题思路二:
这道题是普通是二叉树,可以在二叉树中搜索p和q,然后从路径中找到最后一个相同的节点即为父节点,可以用递归来实现,在递归函数中,首先看当前结点是否为空,若为空则直接返回空,若为p或q中的任意一个,也直接返回当前结点。否则的话就对其左右子结点分别调用递归函数,由于这道题限制了p和q一定都在二叉树中存在,那么如果当前结点不等于p或q,p和q要么分别位于左右子树中,要么同时位于左子树,或者同时位于右子树,那么我们分别来讨论:
- 若p和q分别位于左右子树中,那么对左右子结点调用递归函数,会分别返回p和q结点的位置,而当前结点正好就是p和q的最小共同父结点,直接返回当前结点即可,这就是题目中的例子1的情况。
- 若p和q同时位于左子树,这里有两种情况,一种情况是 left 会返回p和q中较高的那个位置,而 right 会返回空,所以最终返回非空的 left 即可,这就是题目中的例子2的情况。还有一种情况是会返回p和q的最小父结点,就是说当前结点的左子树中的某个结点才是p和q的最小父结点,会被返回。
- 若p和q同时位于右子树,同样这里有两种情况,一种情况是 right 会返回p和q中较高的那个位置,而 left 会返回空,所以最终返回非空的 right 即可,还有一种情况是会返回p和q的最小父结点,就是说当前结点的右子树中的某个结点才是p和q的最小父结点,会被返回,写法很简洁,代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)
{
if(root == NULL)
return NULL;
if(root == q || root == p)
{
return root;
}
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left && right)
return root;
return left ? left : right;
}
};
另一题型:
235. Lowest Common Ancestor of a Binary Search Tree
转自:
来源:CSDN
作者:xuchenhuics
链接:https://blog.csdn.net/xuchenhuics/article/details/103838121